
MapBasic
11.5

USER GUIDE

Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor or its representatives. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, without the written
permission of Pitney Bowes Software Inc., One Global View, Troy, New York 12180-8399.
© 2012 Pitney Bowes Software Inc. All rights reserved. Pitney Bowes Software Inc. is a wholly owned subsidiary of Pitney Bowes Inc. Pitney Bowes, the
Corporate logo, MapInfo, Group 1 Software, and MapBasic are trademarks of Pitney Bowes Software Inc. All other marks and trademarks are property of their
respective holders.

Contact information for all Pitney Bowes Software Inc. offices is located at: http://www.pbinsight.com/about/contact-us.
© 2012 Adobe Systems Incorporated. All rights reserved. Adobe, the Adobe logo, Acrobat and the Adobe PDF logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries.
© 2012 OpenStreetMap contributors, CC-BY-SA; see OpenStreetMap http://www.openstreetmap.org and CC-BY-SA http://creativecommons.org/
licenses/by-sa/2.0
libtiff © 1988-1997 Sam Leffler, © 2012 Silicon Graphics Inc. All Rights Reserved.
libgeotiff © 2012 Niles D. Ritter.
Amigo, Portions © 1999 Three D Graphics, Inc. All Rights Reserved.
Halo Image Library © 1993 Media Cybernetics Inc. All Rights Reserved
Portions thereof LEAD Technologies, Inc. © 1991-2012. All Rights Reserved.
Portions © 1993-2012 Ken Martin, Will Schroeder, Bill Lorensen. All Rights Reserved.
ECW by ERDAS © 1993-2012 Integraph Corporation, part of Hexagon Group. and/or its suppliers. All rights reserved.
Portions © 2012 Integraph Corporation, part of Hexagon Group All Rights Reserved.
MrSID, MrSID Decompressor and the MrSID logo are trademarks of LizardTech, A Celartem Company. used under license. Portions of this computer program
are copyright © 1995-1998 LizardTech, A Celartem Company, and/or the university of California or are protected by US patent nos. 5,710,835 or 5,467,110 and
are used under license. All rights reserved. MrSID is protected under US and international patent & copyright treaties and foreign patent applications are
pending. Unauthorized use or duplication prohibited.
Contains FME® Objects © 2005-2012 Safe Software Inc., All Rights Reserved.
Crystal Reports © 2012 SAP AG, All Rights Reserved. Crystal Reports® and Business Objects™ are the trademark(s) or registered trademark(s) of SAP AG in
Germany and in several other countries.
Amyuni PDF Converter © 2000-2012, AMYUNI Consultants – AMYUNI Technologies. All rights reserved.
Civic England - Public Sector Symbols Copyright © 2012 West London Alliance. The symbols may be used free of charge. For more information on these
symbols, including how to obtain them for use in other applications, please visit the West London Alliance Web site at http://www.westlondonalliance.org
© 2006-2012 TomTom International BV. All Rights Reserved. This material is proprietary and the subject of copyright protection and other intellectual property
rights owned or licensed to TomTom. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying
or disclosure of this material.
Microsoft Bing: All contents of the Bing service are Copyright © 2012 Microsoft Corporation and/or its suppliers, One Microsoft Way, Redmond, WA 98052,
USA. All rights reserved. Microsoft or its suppliers own the title, copyright, and other intellectual property rights in the Bing service and content. Microsoft,
Windows, Windows Live, Windows logo, MSN, MSN logo (butterfly), Bing, and other Microsoft products and services may also be either trademarks or
registered trademarks of Microsoft in the United States and/or other countries.
This product contains 7-Zip, which is licensed under GNU Lesser General Public License, Version 3, 29 June 2007 with the unRAR restriction. The license can
be downloaded from http://www.7-zip.org/license.txt. The GNU License may be downloaded from http://www.gnu.org/licenses/lgpl.html. The source code
is available from http://www.7-zip.org.
Products named herein may be trademarks of their respective manufacturers and are hereby recognized. Trademarked names are used editorially, to the
benefit of the trademark owner, with no intent to infringe on the trademark.
May 22, 2012

United States:
Phone: 518.285.6000
Fax: 518.285.6070
Sales: 800.327.8627
Government Sales: 800.619.2333
Technical Support: 518.285.7283
Technical Support Fax: 518.285.7575
www.pb.com/software

Canada:
Phone: 416.594.5200
Fax: 416.594.5201
Sales: 800.268.3282
Technical Support:.518.285.7283
Technical Support Fax: 518.285.7575
www.pb.com/software

Europe/United Kingdom:
Phone: +44.1753.848.200
Fax: +44.1753.621.140
Technical Support: +44.1753.848.229
www.pitneybowes.co.uk/software

Asia Pacific/Australia:
Phone: +61.2.9437.6255
Fax: +61.2.9439.1773
Technical Support: 1.800.648.899
www.pitneybowes.com.au/software

http://www.pb.com/software
http://www.pb.com/software
http://www.pitneybowes.co.uk/software
http://www.pitneybowes.com.au/software
http://www.pbinsight.com/about/contact-us
http://www.openstreetmap.org
http://creativecommons.org/licenses/by-sa/2.0
http://creativecommons.org/licenses/by-sa/2.0
http://www.westlondonalliance.org/
http://www.7-zip.org/license.txt
http://www.gnu.org/licenses/lgpl.html
http://www.7-zip.org

Table of Contents

Chapter 1: Getting Started . 13
Hardware & Software Requirements .14

Compatibility with Previous Versions .14
Installing the MapBasic Development Environment .14

Before You Begin .14
Installation .15
Starting MapBasic .15

MapBasic File Names and File Types .15
MapBasic Documentation Set .16
Conventions Used in This Manual. .16

Terms .17
Typographical Conventions .17

Getting Technical Support .17
Contacting Technical Support .18
Software Defects .19
Other Resources .19

Chapter 2: A Quick Look at MapBasic. 21
How Do I Create and Run a MapBasic Application? .22

What Are the Key Features of MapBasic? .23
MapBasic Lets You Customize MapInfo Professional .23
MapBasic Lets You Automate MapInfo Professional .23
MapBasic Provides Powerful Database-Access Tools .24
MapBasic Lets You Connect MapInfo Professional to Other Applications.24

How Do I Learn MapBasic? .24
The MapBasic Window in MapInfo Professional .25

Training and On-Site Consulting .26

Chapter 3: Using the Development Environment . 27
Editing Your Program .28

Keyboard Shortcuts .29
Limitations of the MapBasic Text Editor. .31
MapBasic 11.5 3 User Guide

Compiling Your Program . 31
A Note on Compilation Errors . 32
Running a Compiled Application . 32
Using Another Editor to Write MapBasic Programs . 33

Linking Multiple Modules Into a Single Project . 34
What is a MapBasic Project File? . 34
Creating a Project File . 35
Compiling and Linking a Project . 36
Calling Functions or Procedures From Other Modules . 37

Menu Summary in MapBasic Development Environment. 38
The Edit Menu . 39
The Search Menu . 39
The Project Menu. 40
The Window Menu. 41
The Help Menu . 41

Chapter 4: MapBasic Fundamentals. 43
Comments . 44
Case-Sensitivity . 44
Continuing a Statement Across Multiple Lines . 44
Codes Defined In mapbasic.def. 44
Typing Statements Into the MapBasic Window . 45
Variables . 45
Fixed-length and variable-length String variables . 47
Array Variables . 47
Custom Data Types (Data Structures). 48
Global Variables. 49
Scope of Variables. 50

Expressions. 50
What is a Constant?. 50
What is an Operator?. 51
What is a Function Call? . 51
A Closer Look At Constants. 52
Variable Type Conversion . 55
A Closer Look At Operators . 55
MapBasic Operator Precedence . 59

Looping, Branching, and Other Flow-Control . 60
If…Then Statement . 60
Do Case Statement . 61
GoTo Statement. 62
For…Next Statement . 62
Do…Loop. 63
4 MapBasic 11.5

While…Wend Loop .64
Ending Your Program. .64
Ending Your Program and MapInfo Professional. .64

Procedures. .64
Main Procedure .65
Calling a Procedure .65
Calling a Procedure That Has Parameters .66
Passing Parameters By Reference .66
Passing Parameters By Value .67
Calling Procedures Recursively .67

Procedures That Act As System Event Handlers. .68
What Is a System Event?. .68
What Is an Event Handler? .68
When Is a System Event Handler Called? .70

Tips for Handler Procedures .71
Keep Handler Procedures Short .71
Selecting Without Calling SelChangedHandler .71
Preventing Infinite Loops .71
Custom Functions .72
Scope of Functions .72

Compiler Instructions .72
The Define Statement .73
The Include Statement .73

Program Organization. .74

Chapter 5: Debugging and Trapping Runtime Errors . 77
Debugging a MapBasic Program. .78

Summary of the Debugging Process .78
Limitations of the Stop Statement .79
Other Debugging Tools .80

Error Trapping .80
Example of Error Trapping .80

Chapter 6: Creating the User Interface . 83
Event-Driven Programming .84

What Is an Event? .84
What Happens When The User Generates A Menu Event? .84
How Does a Program Handle ButtonPad Events?. .85
How Does a Program Handle Dialog Box Events? .86

Menus. .86
Menu Fundamentals .86
Adding New Items To A Menu .87
MapBasic 11.5 5 User Guide

Removing Items From A Menu . 87
Creating A New Menu . 88
Altering A Menu Item . 89
Re-Defining The Menu Bar . 90
Specifying Language-Independent Menu References. 91
Customizing MapInfo Professional’s Shortcut Menus . 91
Assigning One Handler Procedure To Multiple Menu Items . 92
Simulating Menu Selections. 93
Defining Shortcut Keys And Hot Keys . 93
Controlling Menus Through the MapInfo Professional Menus File 94

Standard Dialog Boxes. 96
Displaying a Message . 96
Asking a Yes-or-No Question . 96
Selecting a File . 96
Indicating the Percent Complete . 97
Displaying One Row From a Table . 97

Custom Dialog Boxes. 98
Sizes and Positions of Controls . 98
Control Types. 99
Specifying a Control’s Initial Value. 102
Reading a Control’s Final Value . 103
Responding to User Actions by Calling a Handler Procedure 103
Enabled / Disabled Controls . 104
Letting the User Choose From a List . 104
Managing MultiListBox Controls . 105
Specifying Shortcut Keys for Controls . 105
Closing a Dialog Box . 106

Windows . 106
Specifying a Window’s Size and Position . 107
Map Windows . 107
Using Animation Layers to Speed Up Map Redraws. 108
Browser Windows . 110
Graph Windows . 110
Layout Windows. 111
Redistrict Windows . 111
Message Window. 111

ButtonPads (Toolbars) . 113
What Happens When the User Chooses a Button?. 113
MapBasic Statements Related To ButtonPads . 114
Creating A Custom PushButton . 115
Adding A Button To The Main ButtonPad . 116
6 MapBasic 11.5

Creating A Custom ToolButton .116
Choosing Icons for Custom Buttons. .117
Selecting Objects by Clicking With a ToolButton .118
Including Standard Buttons in Custom ButtonPads .119
Assigning Help Messages to Buttons. .120
Docking a ButtonPad to the Top of the Screen .121
Other Features of ButtonPads .121

Cursors. .121
Integrating Your Application Into MapInfo Professional .122

Loading Applications Through the Startup Workspace .123
Manipulating Workspaces through MapBasic .123

Performance Tips for the User Interface. .124
Animation Layers .124
Avoiding Unnecessary Window Redraws .124
Purging the Message Window .124
Suppressing Progress Bar Dialog Boxes .125

Chapter 7: Working With Tables . 127
Determining Table Names at Runtime .128
Opening Two Tables With The Same Name .128
Opening Non-Native Files As Tables .129

Reading Row-And-Column Values From a Table. .130
Alias Data Types as Column References .131
Scope .133
Using the “RowID” Column Name To Refer To Row Numbers133
Using the “Obj” Column Name To Refer To Graphic Objects 133
Finding Map Addresses In Tables .134
Geocoding .134
Performing SQL Select Queries. .135
Error Checking for Table and Column References .135

Writing Row-And-Column Values to a Table .135
Creating New Tables .135

Modifying a Table’s Structure. .136
Creating Indexes and Making Tables Mappable .137
Reading A Table’s Structural Information .137
Working With The Selection Table. .138
Changing the Selection .139
Updating the Currently-Selected Rows .139
Using the Selection for User Input .139

Accessing the Cosmetic Layer .140
Accessing Layout Windows. .140
Multi-User Editing .141
MapBasic 11.5 7 User Guide

The Rules of Multi-User Editing . 141
Preventing Conflicts When Writing Shared Data . 143
Opening a Table for Writing . 145

Files that Make Up a Table . 145
Raster Image Tables . 145
Working With Metadata . 147

What is Metadata? . 147
What Do Metadata Keys Look Like? . 147
Examples of Working With Metadata. 148

Working With Seamless Tables. 150
What is a Seamless Table? . 150
How Do Seamless Tables Work? . 150
MapBasic Syntax for Seamless Tables . 151
Limitations of Seamless Tables . 151

Accessing DBMS Data . 152
How Remote Data Commands Communicate with a Database 152
Connecting and Disconnecting . 152
PostGIS Geometry Conversion Behavior . 154

Accessing/Updating Remote Databases with Linked Tables 154
Live Access to Remote Databases . 155

Performance Tips for Table Manipulation . 155
Set the Default View for Remote Tables . 155
Minimize Transaction-File Processing . 155
Use Indices Where Appropriate . 156
Using Sub-Selects . 156
Optimized Select Statements. 156
Using Update Statements . 156

Chapter 8: File Input/Output . 159
Sequential File I/O . 161

Random File I/O. 162
Binary File I/O . 163

Platform-Specific & International Character Sets . 163
File Information Functions . 164

Chapter 9: Graphical Objects . 165
Using the “Obj” Column. 166

Creating an Object Column . 167
Limitations of the Object Column. 167

Querying An Object’s Attributes . 168
Object Styles (Pen, Brush, Symbol, Font) . 169
Understanding Font Styles. 170
8 MapBasic 11.5

Stacked Styles .171
Style Variables .172
Selecting Objects of a Particular Style .173

Creating New Objects .175
Object-Creation Statements. .175
Object-Creation Functions .176
Creating Objects With Variable Numbers of Nodes .176
Storing Objects In a Table .177

Creating Objects Based On Existing Objects. .178
Creating a Buffer .178
Using Union, Intersection, and Merge .178
Creating Isograms .179
Creating Offset Copies. .179

Modifying Objects .180
General Procedure for Modifying an Object. .180
Repositioning An Object. .180
Moving Objects and Object Nodes. .180
Modifying An Object’s Pen, Brush, Font, or Symbol Style .180
Converting An Object To A Region or Polyline .181
Erasing Part Of An Object .181
Points Of Intersection. .182

Working With Map Labels. .182
Turning Labels On .182
Turning Labels Off .182
Editing Individual Labels .182
Querying Labels .183
Other Examples of the Set Map Statement .183
Differences Between Labels and Text Objects .184

Coordinates and Units of Measure .186
Units of Measure .187

Advanced Geographic Queries .188
Using Geographic Comparison Operators .188
Querying Objects in Tables .190
Using Geographic SQL Queries With Subselects .190
Using Geographic Joins .191
Proportional Data Aggregation. .192

Chapter 10: Advanced Features of Microsoft Windows 193
Specifying the Library. .194
Passing Parameters. .195
Calling Standard Libraries .195
Calling a DLL Routine by an Alias .195
MapBasic 11.5 9 User Guide

Array Arguments . 196
User-Defined Types . 196
Logical Arguments . 196
Handles . 197
Example: Calling a Routine in KERNEL . 197
Troubleshooting Tips for DLLs. 198

Creating Custom Button Icons and Draw Cursors . 199
Reusing Standard Icons. 199
Custom Icons . 200
Custom Draw Cursors for Windows. 201

Inter-Application Communication Using DDE . 201
Overview of DDE Conversations . 201
How MapBasic Acts as a DDE Client . 202
How MapInfo Professional Acts as a DDE Server . 203
How MapInfo Professional Handles DDE Execute Messages. 205
Communicating With Visual Basic Using DDE . 206
Examples of DDE Conversations. 206
DDE Advise Links . 206

Incorporating Windows Help Into Your Application . 207

Chapter 11: Integrated Mapping . 209
Conceptual Overview of Integrated Mapping . 210
Technical Overview of Integrated Mapping . 211

System Requirements . 211
Other Technical Notes . 212

A Short Sample Program: “Hello, (Map of) World” . 212
A Closer Look at Integrated Mapping . 213

Sending Commands to MapInfo Professional . 214
Querying Data from MapInfo Professional. 214
Customizing MapInfo Professional’s Shortcut Menus . 218
Terminating Your Visual Basic Program . 220
A Note About MapBasic Command Strings . 220
A Note About Dialog Boxes . 221
A Note About Accelerator Keys . 221

Using Callbacks to Retrieve Info from MapInfo Professional. 221
Technical Requirements for Callbacks . 222
General Procedure for Using OLE Callbacks . 222
Processing the Data Sent to a Callback . 223
C/C++ Syntax for Standard Notification Callbacks . 225

Alternatives to Using OLE Callbacks . 225
DDE Callbacks. 226
MBX Callbacks. 226
10 MapBasic 11.5

Displaying Standard MapInfo Professional Help .227
Disabling Online Help. .227
Displaying a Custom Help File .227

Related MapBasic Statements and Functions .228
OLE Automation Object Models .230

Using the OLE Object Model from within the MapInfo Professional Process 232
Properties of the Application Object. .232
Properties of the DockWindow Object .235
Properties of the MBApplications Collection .238
Properties of an Object in MBApplications. .238
Properties of the MBGlobals Collection .239
Properties of an Object in MBGlobals .240
Properties of the MIMapGen Object. .241
Methods of the MIMapGen Object .242
Properties of the MISearchInfo Object .243
Method of the MIRow Object .244
Properties of the MIField Object. .244
Properties of the MISelection Object .245

MapInfo Professional Command-Line Arguments. .246
Getting Started with Integrated Mapping and Visual C++ with MFC247

Adding Toolbar Buttons and Handlers .250
Using Exception Handling to Catch MapInfo Professional Errors 252
Add OLE Automation Server Support .253
Adding the WindowContentsChanged Callback .254

Learning More .254

Chapter 12: Working with .Net . 255
Terminology .256

Getting Started .256
Creating a Class in .Net .257
Building and Copying the Assembly File .258
Declaring and Calling the Method from MapBasic .258
Calling a Method by an Alias .259
Passing Arguments to .Net .260
Performance Notes .261

Working with Structures in .Net. .261
Passing Custom Variable Types (Structures) to .Net. .261
Restrictions of Passing Structures .264

Exception Handling. .265
Working with the GAC .266

Loading an Assembly from the Global Assembly Cache (GAC) 266
Controlling MapInfo Professional from Within a .Net Method 267
MapBasic 11.5 11 User Guide

Integrated Mapping in .Net . 269
Accessing MapInfo Professional through COM . 269
Callback Methods . 270
Thread Safety Issues . 272

Appendix A: Sample Programs. 275
Samples\DLLEXAMP Directory . 276
Samples\DotNet Directory . 276
Samples\MapBasic Directory. 276
Samples\MFC Directory . 283
Samples\PwrBldr Directory . 284
Samples\VB4 Directory. 284
Samples\VB6 Directory. 284

Appendix B: Summary of Operators. 285
Comparison Operators . 286
Logical Operators . 287
Geographic Operators . 287

Precedence . 288
Automatic Type Conversions . 288

Appendix C: Supported ODBC Table Types . 291
Appendix D: Making a Remote Table Mappable . 293
Appendix E: Manually Creating a MapInfo_MapCatalog. 295

Manually Making a Remote Table Mappable. 297

Appendix F: MapBasic Glossary. 301
Index . 311
12 MapBasic 11.5

1

Getting Started
Welcome to the MapBasic® Development Environment, the powerful, yet easy-
to-use programming language that lets you customize and automate MapInfo
Professional.

The following pages tell you what you need to know to install the MapBasic
software. For information on the purpose and capabilities of MapBasic, see A
Quick Look at MapBasic.

Topics in this section:

What’s New .14
Hardware & Software Requirements .14
Installing the MapBasic Development Environment14
MapBasic File Names and File Types. .15
MapBasic Documentation Set .16
Conventions Used in This Manual .16

What’s New
What’s New
New in this release of MapBasic:

• Added new and updated existing functions and statements, see What’s New in the MapBasic
Reference or MapBasic Help System.

• Added a new Layout Template tool, that provide a convenient way to format print output. The
files are located under:
Samples\MapBasic\LayoutTemplate
For a description of the files at this location, see Samples\MapBasic\LayoutTemplate on
page 280.

Hardware & Software Requirements
Before installing MapBasic for Windows, please make certain that your computer meets the
following minimum requirements:

Compatibility with Previous Versions
MapInfo Professional can run applications created with current or earlier versions of MapBasic.

Installing the MapBasic Development Environment

Before You Begin
The MapBasic installation procedure is described below. If you haven’t already done so:

• Install MapInfo Professional before you install MapBasic. Please see the MapInfo Professional
Install Guide for installation instructions.

Requirement Your choices are:

System Software • Windows XP Professional 32-bit Service Pack 3 (SP3)
• Windows 7 Ultimate 32-bit SP1
• Windows 7 Ultimate 64-bit SP1 with 32-bit compatibility mode
• Windows 2008 Server 32-bit SP2
• Windows 2008 Server R2 64-bit SP1 with XenServer 6.0
• Windows 2008 Server R2 64-bit SP1

Display Any display adapter supported by Windows

Mouse Any mouse or pointing device supported by Windows

Disk space 10 MB
14 MapBasic 11.5

Chapter 1: Getting Started
MapBasic File Names and File Types
Installation
The MapBasic development environment is free. You can download a copy of MapBasic from the
Pitney Bowes Software Inc. web site, at http://www.pbinsight.com, by selecting Support >
Product Downloads and then clicking the MapBasic link. There is also information there about
building custom applications and integrating MapInfo Professional into your application using the
MapBasic development environment, go to http://go.pbinsight.com/mapbasicdocs.

Starting MapBasic
To start the MapBasic Development Environment either:

• Double-click the MapBasic icon on your desktop.
• From the Start menu, select MapBasic 11.5 from the Selected Program folder.

You can check for product updates to your version anytime by selecting Help > Check for
Update.

MapBasic File Names and File Types
The MapBasic installation procedure places these files on your computer:

File Name Description

errors.doc Text file listing MapBasic error codes.

icons.def Include file containing ButtonPad- and cursor-related define codes.

mapbasic.bas Header file for Visual Basic programmers; contents similar to mapbasic.def,
but using Visual Basic syntax.

mapbasic.chm MapBasic on-line help file.

mapbasic.def Include file containing standard define codes.

mapbasic.exe executable file which runs the MapBasic development environment.

mapbasic.h Header file for C/C++ programmers; contents similar to mapbasic.def, but
using C/C++ syntax.

mblib.dll Part of the software; contains shared libraries.

mbres.dll Part of the software; contains resources such as strings and dialog boxes.

menu.def Include file containing menu-related define codes.

misecutil.dll Part of the software; contains shared executables.
MapBasic 11.5 15 User Guide

http://go.pbinsight.com/mapbasicdocs

MapBasic Documentation Set
As you use the MapBasic development environment, you produce files with the following extensions:

MapBasic Documentation Set
In addition to this MapBasic User Guide, MapBasic’s documentation set includes the MapBasic
Reference, and online Help System. The MapBasic Reference is a complete guide to all MapBasic
commands. The Help System includes all of the information in MapBasic Reference plus dialog and
menu descriptions.

To Access the MapBasic User Guide and MapBasic Reference either:

• View these documents online at http://go.pbinsight.com/mapbasicdocs.
• View them locally on your machine. These documents install with MapInfo Professional and are

accessible from the MapInfo\Professional\Documentation folder (see
MapBasicUserGuide.pdf and MapBasicReference.pdf in this folder).

Conventions Used in This Manual
This manual uses the following terms and typographical conventions.

papersize.def Include file for use by MapBasic application developers. It contains defines
for use with printer control MapBasic statements.

Samples directory Contains sample programs.

usrinfmb.log Contains log of installation process.

File Name Description

File Name Description

filename.mb Program files (source code)

filename.mbx Compiled (executable) files

filename.mbp Project files (which list all modules to include in a project)

filename.mbo Object files (files created after compiling modules in a project)

filename.err Error listings, generated if you compile a program that has compilation errors.
16 MapBasic 11.5

http://www.mapinfo.com/docs

Chapter 1: Getting Started
Getting Technical Support
Terms
This manual addresses the application developer as you, and refers to the person using an
application as the user. For example:

You can use MapBasic’s Note statement to give the user a message.

The terms program and application are used in the following manner:

• A program is a text file typed in by you, the programmer. Typically, MapBasic program files have
the extension .MB.

• An application file is a binary file executable by MapInfo Professional. The application file must
be present when the user runs the application. MapBasic creates the application file when you
compile your program. MapBasic application files typically have the extension .MBX (MapBasic
eXecutable).

• A command is an item that you choose from a menu. For example, to open a file, choose the
Open command from the File menu.

• A statement is an instruction you can issue from a MapBasic program. For example, a MapBasic
program can issue a Select statement to select one or more rows from a table.

Typographical Conventions
The Courier font shows sample MapBasic program statements:

Note "hello, world!"

Bold Capitalization identifies MapBasic keywords:

The Stop statement is used for debugging purposes.

In the examples that appear in this manual, the first letter of each MapBasic language keyword is
capitalized. However, you are not required to use the same capitalization when you type in your own
programs. If you prefer, you can enter your programs using upper case, lower case, or mixed case.

References to menu commands in the MapBasic development environment use the greater-than
sign (>), as in the following example:

• Choose the File > New command to open a new edit window.

The expression “File > New” refers to the New command on the File menu.

Getting Technical Support
Pitney Bowes Software Inc. offers a free support period on all new software purchases and
upgrades, so you can be productive from the start. Once the free period ends, Pitney Bowes
Software Inc. offers a broad selection of extended support services for individual, business, and
corporate users.

Technical Support is here to help you, and your call is important. This section lists the information
you need to provide when you call your local support center. It also explains some of the technical
support procedures so that you will know what to expect about the handling and resolution of your
particular issue.
MapBasic 11.5 17 User Guide

Getting Technical Support
Please remember to include your serial number, partner number or contract number when
contacting Technical Support.

Contacting Technical Support
Full technical support for MapBasic is provided for the currently shipping version plus the two
previous versions.

Technical Support Contact Information

Extended support options are available at each of our technical support centers in the Americas,
Europe/Middle East/Africa, and Asia-Pacific regions. To contact the office nearest you, refer to the
Support > Contact Support section on our website:

http://www.pbinsight.com/support/contact-support/

Technical Support Online Case Management System

The Technical Support Online Case Management system is another way to log and manage cases
with our Technical Support center. You must register yourself the first time you access this site if you
do not already have a user ID.

http://go.pbinsight.com/online-case-management

Before You Call

Please have the following information ready when contacting us for assistance:

1. Serial Number. You must have a registered serial number to receive Technical Support.

2. Your name and organization. The person calling must be the contact person listed on the
support agreement.

3. Version of the product you are calling about.

4. The operating system name and version.

5. A brief explanation of the problem. Some details that can be helpful in this context are:
• Error messages
• Context in which the problem occurs
• Consistency - is the problem reoccurring or occurring erratically?

Expected Response Time

Most issues can be resolved during your initial call. If this is not possible, Technical Support will
issue a response before the end of the business day. A representative will provide a status each
business day until the issue is resolved.

Support requests submitted by e-mail or through the online tracking system are handled using the
same guidelines as telephone support requests; however, there is an unavoidable delay of up to
several hours for message transmission and recognition.
18 MapBasic 11.5

http://go.pbinsight.com/online-case-management
http://www.pbinsight.com/support/contact-support/

Chapter 1: Getting Started
Getting Technical Support
Software Defects
If the issue is deemed to be a bug in the software, the representative will log the issue in Pitney
Bowes Software Inc. bug database and provide you with an incident number that you can use to
track the bug. Future upgrades and patches have fixes for many of the bugs logged against the
current version.

Other Resources

MapInfo-L Archive Database

MapInfo-L (MapInfo List) is an independent discussion group, which Pitney Bowes Software
monitors to respond to questions posted to this site. To subscribe to this discussion group, go to:

http://groups.google.com/group/mapinfo-l?hl=en

and click Join this group.

Any messages sent to the list can be read by anyone on the list.

Other Useful Sites for MapInfo Users

MapInfo Tools is a web site organized by Barbara Carroll as a repository and free file exchange for
software tools.

http://mapinfotools.com

GISnet is a web site authored by MapInfo Partner Bill Thoen. There are many links to GIS
information in general and specific links to MapInfo resources.

http://www.gisnet.com/catalog/software/tools/index.php
MapBasic 11.5 19 User Guide

http://groups.google.com/group/mapinfo-l?hl=en
http://mapinfotools.com
http://www.gisnet.com/catalog/software/tools/index.php

Getting Technical Support
20 MapBasic 11.5

2

A Quick Look at
MapBasic
MapBasic is a software package that lets you customize and automate the
MapInfo Professional desktop-mapping software.

Topics in this section:

Getting Started .22
What Are the Key Features of MapBasic?23
How Do I Learn MapBasic? .24
The MapBasic Window in MapInfo Professional.25

Getting Started
Getting Started
The MapBasic software provides you with a development environment. Using this development
environment, you can write programs in the MapBasic programming language.

The MapBasic development environment includes:

• A text editor you can use to type your programs. If you already have a text editor you would
rather use, you can use that editor instead of the MapBasic text editor. For details, see Using
the Development Environment on page 27.

• The MapBasic compiler. After you have written a program, compile it to produce an “executable”
application (specifically, an application that can be run by MapInfo Professional).

• The MapBasic linker. If you are creating a large, complex application, you can divide your
program into separate modules, then “link” those modules together into one application.

• MapBasic online help, providing reference information for each statement and function in the
MapBasic language.

• From looking at the name, you might expect the MapBasic programming language to be
reminiscent of traditional BASIC languages. In fact, MapBasic programs do not look much like
traditional BASIC programs. MapBasic does, however, bear a resemblance to newer versions of
BASIC which have been developed in recent years (for example, Microsoft’s Visual Basic
language).

Every MapBasic program works in conjunction with MapInfo Professional. First, you use the
MapBasic development environment to create and compile your program; then you run MapInfo
Professional when you want to run your program. Thus, a MapBasic program is not a stand-alone
program; it can only run when MapInfo Professional is running. You could say that a MapBasic
program runs on top of MapInfo Professional.

However, MapBasic is not merely a macro language, MapBasic is a full-featured programming
language, with over 300 statements and functions. Furthermore, since MapBasic programs run on
top of MapInfo Professional, MapBasic is able to take advantage of all of MapInfo Professional’s
geographic data-management capabilities.

How Do I Create and Run a MapBasic Application?
Using the Development Environment provides detailed instructions on creating a MapBasic
application.

If you’re in a hurry to get started, you can create your first program by following these steps:

1. Run the MapBasic development environment.

A Traditional BASIC Code Sample A MapBasic Code Sample

20 GOSUB 3000
30 IF DONE = 1 THEN GOTO 90
40 FOR X = 1 TO 10
50 GOSUB 4000
60 NEXT X
80 GOTO 30

Call Check_Status(quit_time)
Do While Not quit_time
For x = 1 To 10
Call Process_batch(x)
Next
Loop
22 MapBasic 11.5

Chapter 2: A Quick Look at MapBasic
What Are the Key Features of MapBasic?
2. Choose File > New to open an edit window.

3. Type a MapBasic program into the edit window. If you do not have a program in mind, you can
enter the following one-line MapBasic program:
Note "Welcome to MapBasic!"

4. Choose File > Save to save the program to a file. Enter a file name such as welcome.mb.

Do not close the Edit window.

5. Choose Project > Compile Current File. MapBasic compiles your program (welcome.mb) and
creates a corresponding executable application file (welcome.mbx).

6. Run MapInfo Professional.

7. Choose Tools > Run MapBasic Program. MapInfo Professional prompts you to choose the
program you want to run.

8. Select welcome.mbx to run your program display the message, “Welcome to MapBasic!” in a
dialog box.

Those are the main steps involved in creating, compiling, and running a MapBasic application. In
practice, of course, the process is more complex. For example, the procedure outlined above does
not describe what happens if you encounter a compilation error. For more details on creating and
compiling MapBasic programs, see Using the Development Environment.

What Are the Key Features of MapBasic?

MapBasic Lets You Customize MapInfo Professional
Through MapBasic, you can customize the MapInfo Professional user-interface. A MapBasic
application can modify or replace the standard MapInfo Professional menus, add entirely new
menus to the MapInfo Professional menu bar, and present the user with dialog boxes custom-
tailored to the task at hand.

Thus, MapBasic lets you create turn-key systems, custom-tailored systems that help the user
perform tasks quickly and easily, with minimal training.

MapBasic Lets You Automate MapInfo Professional
MapBasic applications are often used to spare end-users the tedium of doing time-consuming
manual work. For example, a MapInfo Professional user may need to develop a graticule (a grid of
horizontal and vertical longitude and latitude lines) in the course of producing a map. Drawing a
graticule by hand is tedious, because every line in the graticule must be drawn at a precise latitude
or longitude. However, a MapBasic application can make it very easy to produce a graticule with
little or no manual effort.
MapBasic 11.5 23 User Guide

How Do I Learn MapBasic?
MapBasic Provides Powerful Database-Access Tools
You can perform complex, sophisticated database queries with a single MapBasic statement. For
example, by issuing a MapBasic Select statement (which is modeled after the Select statement in
the SQL query language), you can query a database, apply a filter to screen out any unwanted
records, sort and sub-total the query results. All of this can be accomplished with a single MapBasic
statement.

Using powerful MapBasic statements such as Select and Update, you can accomplish in a few lines
of code what might take dozens or even hundreds of lines of code using another programming
language.

MapBasic Lets You Connect MapInfo Professional to Other Applications
You are not limited to the statements and functions that are built into the MapBasic programming
language. Because MapBasic provides open architecture, your programs can call routines in
external libraries. If you need functionality that isn’t built into the standard MapBasic command set,
MapBasic’s open architecture lets you get the job done.

MapBasic programs can use Dynamic Data Exchange (DDE) to communicate with other software
packages, including Visual Basic applications. MapBasic programs also can call routines in
Windows Dynamic Link Library (DLL) files. You can obtain DLL files from commercial sources, or
you can write your own DLL files using programming languages such as C. MapBasic provides
Integrated Mapping, that lets you integrate MapInfo Professional functionality into applications
written using other development environments, such as Visual Basic. For details see Integrated
Mapping.

How Do I Learn MapBasic?
If you have not already done so, you should learn how to use MapInfo Professional before you begin
working with MapBasic. This manual assumes that you are familiar with MapInfo Professional
concepts and terminology, such as tables, Map windows, and workspaces.

Once you are comfortable using MapInfo Professional, you can use the following printed and online
instructional materials to help you learn about MapBasic.

MapBasic User Guide
This book explains the concepts behind MapBasic programming. Read the User Guide when you
are learning how to program in MapBasic. Each chapter discusses a different area of programming.
For example, every MapBasic programmer should read MapBasic Fundamentals. Creating the
User Interface explains how to create custom menus and dialog boxes, while File Input/Output
tells you how to perform file input/output.

MapBasic Reference
This A-to-Z reference contains detailed information about every statement and function in the
MapBasic language. Use the MapBasic Reference when you need a complete description of a
particular statement or function.
24 MapBasic 11.5

Chapter 2: A Quick Look at MapBasic
The MapBasic Window in MapInfo Professional
Sample Programs
Many programmers find that the best way to learn a programming language is to study sample
programs. Accordingly, MapBasic comes with a library of sample programs. See the Samples
directory installed on your MapBasic CD or download for sample programs included with MapBasic.

The MapBasic User Guide frequently refers to the TextBox sample program (textbox.mb).
You may want to become familiar with this program before you learn MapBasic.

MapInfo Workspace Files
MapInfo Professional can save session information (for example, the list of what tables and windows
are open) in a workspace file. If you use a text editor to examine a workspace file, you will see that
the workspace contains MapBasic statements. You can copy MapBasic statements out of a
workspace file, and paste the statements into your program. In a sense, any MapInfo workspace is a
sample MapBasic program.

For example, suppose you want to write a MapBasic program that creates an elaborate page layout.
You could create the page layout interactively, using MapInfo Professional, and save the layout in a
MapInfo workspace file. The workspace file would contain a set of MapBasic statements relating to
page layouts. You then could copy the layout-related statements from the workspace file, and paste
the statements into your MapBasic program.

Online Help
The MapBasic development environment provides extensive online Help. Much of the online Help is
reference information, providing descriptions of every statement and function in the language. The
Help file also provides instructions on using the MapBasic development environment.

As you are typing in your program, if you select a statement or function name and press F1,
the Help window shows you help for that statement or function.

The Help system contains many brief sample programs which you can copy from the Help window
and paste into your program. You can copy text out of the Help window by clicking and dragging
within the Help window.

If you are viewing a Help screen and you click on a MapBasic menu or a MapBasic edit window, the
Help window disappears. This is standard behavior for Windows Help. The Help window has not
been closed, it is simply in the background. Note that you can return to the Help window by pressing
Alt-Tab. You can also prevent the Help window from disappearing by checking the Help window’s
Help > Always on Top menu item.

The MapBasic Window in MapInfo Professional
The MapInfo Professional software provides the MapBasic window to help you learn the syntax of
statements in the MapBasic language.

To open the MapBasic window:

1. Run MapInfo Professional.
MapBasic 11.5 25 User Guide

The MapBasic Window in MapInfo Professional
2. Choose Options > Show MapBasic Window.

The MapBasic window appears on the screen. Thereafter, as you use MapInfo Professional’s
menus and dialog boxes, the MapBasic window displays corresponding MapBasic statements.

For example, if you perform a query by using MapInfo Professional’s Select dialog box, the
MapBasic window automatically shows you how you could perform the same operation through
statements in the MapBasic language.

You can also enter statements directly into the MapBasic window, although not all MapBasic
statements may be executed in this manner. To determine if a statement may be issued through the
MapBasic window, consult the MapBasic Reference and the online Help System. Statements that
are not supported through the MapBasic window are identified by a notice that appears under the
Restrictions heading. As a general rule, you cannot enter flow-control statements (for example,
For…Next loops) through the MapBasic window.

The MapBasic window is also a debugging tool. For details, see Debugging and Trapping
Runtime Errors.

Training and On-Site Consulting
Pitney Bowes Software Inc. Corporation offers MapBasic training classes. If you want to become
proficient in MapBasic as quickly as possible, you may want to attend MapBasic training. To ensure
an ideal training environment, class size is limited to eight to ten people. For information on
scheduled classes, call The Pitney Bowes Software Inc. Training department.

If you require extensive assistance in developing your MapBasic application, you may be interested
in Pitney Bowes Software Inc.’s Consulting Services. You can arrange to have MapBasic systems
engineers work on-site with you. For additional information, call MapInfo Professional Services.
26 MapBasic 11.5

3

Using the Development
Environment
The MapBasic software includes a text editor you can use to type your program.
Conventional menu items (for example, Undo, Copy, Paste) make it easy to edit
your program. Other menu items let you compile (and, optionally link) your
program(s) into executable form. Online help for the MapBasic language is
available as well.

The MapBasic text editor, MapBasic compiler, and MapBasic online help are
collectively known as the Development Environment.

Topics in this section:

Introduction to MapBasic Development Environment28
Editing Your Program .28
Compiling Your Program .31
Linking Multiple Modules Into a Single Project.34
Menu Summary in MapBasic Development Environment 38

Introduction to MapBasic Development Environment
Introduction to MapBasic Development Environment
The MapBasic Development Environment contains a built-in text editor that you can use to create
and edit MapBasic programs. Pull-down menus — File, Edit, Search, Project, Window, and Help
— provide you with everything you need to create and edit programs, compile them, and handle any
syntax errors detected by the MapBasic compiler.

If you are familiar with other text editors, you will find MapBasic’s text editor easy to use. Most of the
MapBasic menus are predictable: the File menu contains Open, Close, Print, and Save
commands, while the Edit menu contains Undo, Cut, Copy, and Paste commands. However,
MapBasic also contains elements not found in conventional text editors (for example, a compiler and
a linker).

Editing Your Program
If you have not already done so, run MapBasic. Then, from the File menu, either choose Open (to
display an existing program) or New (to open a blank edit window).

Type your program into the edit window. If you don’t yet have a program to type in, you can use the
following one-line sample MapBasic program:

Note "Welcome to MapBasic!"

Once you have typed in your program, you can save your program to disk by choosing Save from
the File menu. Give your program a name such as welcome.mb.

MapBasic automatically appends the file extension .mb to program files. Thus, if you name your
program welcome, the actual file name is welcome.mb.

Since MapBasic saves your program in a conventional text file, you can use other text editing
software to edit your program if you wish.
28 MapBasic 11.5

Chapter 3: Using the Development Environment
Editing Your Program
Keyboard Shortcuts
The following table lists the keyboard shortcuts you can use within the MapBasic edit window.

Keyboard Action Effect of Action

Home / End Insertion point moves to beginning/end of line.

Ctrl-Home/ Ctrl-End Insertion point moves to beginning/end of document.

Ctrl-TAB/
Ctrl-Shift-TAB

Insertion point moves backward/forward one word.

Ctrl-T Displays the Go To Line dialog box.

Ctrl-O Displays the Open dialog box.

Ctrl-N Opens a new, empty edit window.

Ctrl-S Saves the active edit window.

Ctrl-P Prints the active edit window.

Ctrl-A Selects all text in the edit window.

Ctrl-C Copies selected text to the clipboard.

Ctrl-X Cuts selected text and copies it to the clipboard.

Ctrl-V Pastes text from the clipboard into the edit window.

Ctrl-Del Deletes the word after the insertion point.

Del Deletes selected text; does not copy to clipboard.

Ctrl-F Displays the Find And Replace dialog box.

Ctrl-G Repeats the most recent Find command.

Ctrl-R Replaces the selected text (using the replacement text from the Find
And Replace dialog box), and performs another Find.

Ctrl-J Displays Select Project File dialog box.

Ctrl-K Compiles the program in the active window.

Ctrl-E Next Error command; scrolls the edit window to show the line that
caused a compilation error.

Ctrl-L Links the active project.

Ctrl-U Sends message to MapInfo Professional to run the active program.
MapBasic 11.5 29 User Guide

Editing Your Program
If you select a function name before pressing F1, Help shows a topic describing that function.

Mouse Shortcuts

The MapBasic online help contains code samples. You can drag & drop code samples from
the help window to your edit window.

To drag and drop code samples from the Help window to your Edit window:

1. Display help.

2. Click and drag within the help window to highlight the text you want to copy.

3. Click on the text you highlighted. Without releasing the mouse button, drag the text out of the
help window.

4. Move the mouse pointer over your edit window, and release the mouse button. The text is
dropped into your program.

F1 Displays Help.

F8 Displays Text Style dialog box, allowing you to change the font.

Ctrl-F4 Closes the active edit window.

Alt-F4 Exits the MapBasic development environment.

Shift-F4 Tile windows.

Shift-F5 Cascade windows.

Keyboard Action Effect of Action

Mouse Action Effect of Action

Double-click Double-clicking on text within your program selects a word. Double-clicking in
the list of error messages scrolls the window to show the line of your program
that caused the error.

Triple-click Highlights entire line of text (32-bit version only).

Drag & Drop Dragging text to another window copies the text. Dragging text within the
same window moves the text (unless you hold down the Ctrl key during the
drag, in which case the text is copied).
30 MapBasic 11.5

Chapter 3: Using the Development Environment
Compiling Your Program
Limitations of the MapBasic Text Editor
Each MapBasic edit window can hold a limited amount of text. If the MapBasic text editor beeps
when you try to insert text, the beeping indicates that the edit window is full.

There are three ways to work around this size limitation:

• If you have another text editor, you can use that editor to edit your program. To compile your
program, switch to MapBasic and choose the Compile From File menu command.

• You can break your program file (.mb file) into two or more smaller files, and then use the
MapBasic Include statement to incorporate the various files into a single application. For more
information about the Include statement, see the MapBasic Reference Guide.

• You can break your program file (.mb file) into two or more smaller files, and then create a
MapBasic project file which links the various program files into a single application. In some
ways, this is similar to using the Include statement to combine program modules. Project files,
however, provide a more efficient solution. Each file included in a project can be compiled
separately; this means that when you edit only one of your modules, you only need to recompile
that module.

Compiling Your Program
If you haven’t already done so, display your program in a MapBasic edit window. Then, to compile
your program, choose Compile Current File from the Project menu.

You can have multiple edit windows open at one time. When you choose Compile Current
File, MapBasic compiles the program that is in the front-most window. Thus, if you have
multiple edit windows open, you must make the appropriate window active before you
compile.

The MapBasic compiler checks the syntax of your program. If your program contains any syntax
errors, MapBasic displays a dialog box indicating that errors were found, and then displays
descriptions of the errors in a list beneath the edit window.

Each error message begins with a line number, indicating which line in the program caused the
error. You must correct your program’s errors before MapBasic can successfully compile your
program.
MapBasic 11.5 31 User Guide

Compiling Your Program
Figure: First.mb

If you double-click an error message that appears beneath the edit window, MapBasic scrolls the
window to show you the line of the program that caused the error.

After you correct any errors in your program, choose Compile Current File again to try to
recompile. Once your program compiles successfully, MapBasic displays a dialog box indicating that
compilation was complete.

When compilation is successful, MapBasic creates an .mbx file (MapBasic eXecutable). This .mbx
file must be present to run the finished application. Thus, if you want to provide your users with a
finished MapBasic application, but you do not want to give them all of your source code, give the
users your .mbx file but not your .mb file.

A Note on Compilation Errors
There are some types of spelling errors which the MapBasic compiler cannot detect. For example,
the MapBasic compiler will compile the following program, even though the program contains a
typographical error on the second line (STATES is misspelled as TATES):

Open Table "states"
Map From tates

The MapBasic compiler cannot identify the typographical error on the second line. This is not a
defect of the compiler, rather, it is because some variable and table references are not evaluated
until runtime (until the moment the user runs the program). When the user runs the preceding
program, MapInfo Professional attempts to carry out the Map From tates statement. At that time,
MapInfo Professional displays an error message (for example, “Table tates is not open”) unless a
table called “tates” is actually available.

Running a Compiled Application
To run the compiled application, choose File > Run MapBasic Program from MapInfo
Professional’s main menu. The Run MapBasic Program dialog box prompts you to choose a
MapBasic application file (.mbx file) to run.
32 MapBasic 11.5

Chapter 3: Using the Development Environment
Compiling Your Program
The MapBasic development environment also provides a shortcut to running your program: After
compiling your program, choose Run from MapBasic’s Project menu (or press Ctrl-U). MapBasic
sends a message to MapInfo Professional, telling MapInfo Professional to execute the application.

MapInfo Professional must already be running.

Using Another Editor to Write MapBasic Programs
If you already have a favorite text editor, you can use that editor for editing your MapBasic program.
Just save your MapBasic program as a standard text file.

You can also use word processing software to edit your programs. However, if you use a word
processor to edit your programs, you may need to take special steps to make sure that the word
processor saves your work in a plain text file format. Saving a document as plain text often involves
choosing Save As instead of Save. For more details on saving a document in a plain text format,
see the documentation for your word processing software.

Compiling Programs Written In Another Editor

Earlier, we discussed how MapBasic’s Compile Current File menu item compiles whichever
program is on the screen in the active edit window. MapBasic also provides an alternate method for
compiling your program: the File > Compile From File command on the MapBasic main menu.

If you use a text editor other than MapBasic to edit your program, you probably will want to use
Compile From File to compile your program. Compile From File compiles a program without
displaying the program in a MapBasic edit window.

When you choose Compile From File, MapBasic prompts you to choose a file to compile. If the
chosen file has any compilation errors, MapBasic writes the error messages to a text file with the .err
extension. For example, if you choose Compile From File to compile the program dispatch.mb,
MapBasic writes any error messages to the text file dispatch.err. To view the error file, choose File >
Open.

Compiling and Linking Programs From the Command Line

If you use a text editor other than MapBasic to edit your programs, you may find it awkward
switching to MapBasic whenever you want to compile or link your application. However, there is a
way to automate the process of compiling and linking: if you can configure your text editor so that it
issues a command string, then you can compile programs without leaving your editor.

You can start the MapBasic development environment by executing the command:

mapbasic

If the command line also includes the parameter -D followed by one or more program names,
MapBasic automatically compiles the program files. For example, the following command line
launches MapBasic and compiles two program files (main and sub1):

mapbasic -D main.mb sub1.mb
MapBasic 11.5 33 User Guide

Linking Multiple Modules Into a Single Project
If the command line includes the parameter -L followed by one or more project file names,
MapBasic links the projects. (Linking and Project files are discussed in Compiling and Linking a
Project on page 36.) For example, the following command line links the TextBox application:

mapbasic -L tbproj.mbp

The command line can include both the -D and the -L parameters, as shown below:

mapbasic -D textbox.mb -L tbproj.mbp

If you launch MapBasic with a command line that includes the -D parameter or the -L parameter,
MapBasic shuts down after compiling or linking the appropriate files.

To start MapBasic without displaying a splash screen use the -Nosplash parameter:

mapbasic -Nosplash

Linking Multiple Modules Into a Single Project

What is a MapBasic Project File?
A project file is a text file that allows MapBasic to link separate program files into one application. If
you are developing a large, complex application, your program could eventually contain thousands
of lines of code. You could type the entire program into a single program file. However, most
programmers dislike managing program files that large; once a program file grows to over a
thousand lines, it can be difficult to locate a particular part of the program. Therefore, many
programmers break up large applications into two or more smaller files. The practice of breaking
large programs down into smaller, more manageable pieces is known as modular programming.

If you do divide your program into two or more modules, you need to create a project file. The project
file tells the MapBasic linker how to combine separate modules into a single, executable application.

Project files are an optional part of MapBasic programming. You can create, compile, and run
applications without ever using a project file. However, if you plan to develop a large-scale MapBasic
application, it is worth your while to take advantage of MapBasic’s project-file capabilities.

What Are The Benefits of Using Project Files?
• Project files let you modularize your programming. Once you set up a project file, you can

divide your program into numerous, small files. Modular programs are generally easier to
maintain in the long run. Also, having modular programs makes it unlikely that your program will
grow too large to be edited in a MapBasic edit window.

• Project files make it easy to have two or more programmers working on a project at the
same time. Once you have set up a project file, each programmer can work on a separate
module, and the modules can be joined (or, more specifically, “linked”) by the project file.

• Project files can reduce the time it takes to recompile your application. If you change one
module in a multiple-module project, you can recompile just that module, then relink the project.
This is often much faster than recompiling all source code in the project — which is what you
must do if you do not use project files.
34 MapBasic 11.5

Chapter 3: Using the Development Environment
Linking Multiple Modules Into a Single Project
Examples of Project Files

The TextBox application uses a project file (tbproj.mbp) that looks like this:

[Link]
Application=textbox.mbx
Module=textbox.mbo
Module=auto_lib.mbo

Similarly, the ScaleBar application uses a project file (sbproj.mbp) that looks like this:

[Link]
Application=scalebar.mbx
Module=scalebar.mbo
Module=auto_lib.mbo

In both examples, the final line of the project file tells MapBasic to build the auto_lib module into the
project. The auto_lib module is one of the sample programs included with the MapBasic software.

If a MapBasic program includes the auto_lib module, the program can provide a special “Auto-
Load…” button in its About dialog box. By choosing the Auto-Load button, the user can set up the
application so that it loads automatically every time the user runs MapInfo Professional. If the user
does not turn on the Auto-Load feature, the MapBasic application stops running as soon as the user
exits MapInfo Professional.

To build the Auto-Load feature into your MapBasic program, see the instructions listed in the file
auto_lib.mb.

Creating a Project File
If you have already written a program file, and you want to create a project file for your program,
follow these steps:

1. Choose File > New to open a new edit window.

2. Enter the following line in the edit window:
[Link]

3. Enter a line that contains the text Application=appfilename (where appfilename
specifies the file name of the executable file you want to create). For example:
Application=C:\MB\CODE\CUSTOM.MBX
Application=Local:MapBasic:custom.mbx
Application=/MapBasic/mb_code/custom.mbx

4. Enter a line that contains the text Module=modulename (where modulename specifies the
name of a MapBasic object file). For example:
MapBasic 11.5 35 User Guide

Linking Multiple Modules Into a Single Project
Module=C:\MB\CODE\CUSTOM.MBO
Module=Local:MapBasic:custom.mbo
Module=/MapBasic/mb_code/custom.mbo

Note the extension on the filename; MapBasic object files have the file extension .mbo.
MapBasic creates an object file when you compile a single module that is part of a multiple-
module project.
Whenever you choose Project > Compile Current File, MapBasic tries to compile the current
file into an executable application file (ending with .mbx). However, if the program file contains
calls to functions or procedures that are not in the file, MapBasic cannot create an .mbx file. In
this case, MapBasic assumes that the program is part of a larger project. MapBasic then builds
an object file (.mbo) instead of an executable file (.mbx). MapBasic also creates an object file
whenever the module that you are compiling does not have a Main procedure.

5. Repeat step 2 for every file you wish to include in your application.

6. Choose File > Save As to save the project file.
In the Save As dialog box, choose the file type “Project File” (from the list of file types in the lower
left corner of the dialog box), so that the file has the extension .mbp (MapBasic Project).

7. Close the edit window (either choose File > Close or click on the window’s close box).

If you add more modules to the project at a later date, remember to add appropriate Module= lines
to the project file.

Compiling and Linking a Project
Once you have created a project file, you can compile and link your project by following these steps:

1. Compile each module that is used in the project.
• To compile a module, choose File > Open, then choose Project > Compile Current File.
• To compile a module without first displaying it, choose File > Compile From File.

2. Choose Project > Select Project File to tell MapBasic which project file you want to link. The
Select Project File dialog box displays.

3. Choose the project (.mbp) file you want, and click OK. The selected project file appears in an
edit window. This file remains selected until you exit MapBasic, close the project file’s edit
window, or choose the Project > Select Project File command again. Only one project file can
be selected at any time.

You cannot change which project file is selected by making an edit window the front-most
window. You cannot change which project file is selected by choosing File > Open. To
select the project file you want to link, choose Project > Select Project File.

4. Choose Project > Link Current Project to link your application. MapBasic reads the object
(.mbo) files listed in the project file. If there are no link errors, MapBasic builds an executable
(.mbx) file. If there are link errors, MapBasic displays an error message.

You also can link a project in a single step, without first displaying the project file in an edit window,
by choosing File > Link From File.
36 MapBasic 11.5

Chapter 3: Using the Development Environment
Linking Multiple Modules Into a Single Project
The object files created by the MapBasic compiler cannot be linked using any other linker, such as a
C-language linker. Only the MapBasic linker can link MapBasic object modules.

Opening Multiple Files

If you use project files, you may find that you sometimes need to open all of the program files in your
project. To simplify this process, the Open dialog box lets you open multiple files at the same time.

To open multiple files at one time:

1. On the File menu, choose Open.

2. Click a file name in the Open Program dialog box.

3. Hold down the Shift key or the Ctrl key as you click on another file name.
Holding down the Shift key lets you select a list of adjacent files.
Holding down the Ctrl key lets you add files to the selected set, one file at a time.

Calling Functions or Procedures From Other Modules
If an .MB file is part of a multiple-module project, it can call functions and sub procedures located in
other modules. For example, textbox.mb calls the HandleInstallation procedure, which is located in
the auto_lib library. Calling a function or sub procedure located in another module is known as an
external reference.

If your MapBasic program calls an external procedure, your program file must contain a Declare
Sub statement. Similarly, if your program calls an external function, your program file must contain a
Declare Function statement. These Declare statements tell the MapBasic compiler what
parameters are used by the procedure or function.

The sample program textbox.mb contains the statement Include "auto_lib.def". The
auto_lib.def definitions file contains a set of Declare Sub and Declare Function statements which
correspond to the auto_lib module. If textbox.mb did not include the auto_lib.def definitions file, the
MapBasic compiler would consider the call to the HandleInstallation procedure to be a syntax error
(“Invalid sub procedure name”).

Sharing Variables With Other Modules

To declare a global variable that can be used by two or more modules in a project:

1. Place Global statements in a definitions file (for example, “globals.def”).

2. Use the Include statement to incorporate the definitions file into each module that needs to use
the global variables.

For example, the auto_lib.def definitions file declares two global string variables, gsAppFilename
and gsAppDescription. The auto_lib.mb program file and the textbox.mb program file both issue the
statement:

Include "auto_lib.def"

Therefore, the two modules can share the global variables. When the textbox.mb program stores
values in the global variables, the auto_lib.mb library is able to read the new values.
MapBasic 11.5 37 User Guide

Menu Summary in MapBasic Development Environment
Global variables also allow you to share information with other applications that are running.

Declaring Variables That Cannot Be Shared With Other Modules

A program file can contain Dim statements that are located outside of any function or sub procedure
definition. Such Dim statements are known as module-level Dim statements. If a variable is
declared by a module-level Dim statement, all functions and procedures in that module (i.e., in that
.mb file) can use that variable. However, a MapBasic file cannot reference another file’s module-
level Dims.

Use module-level Dim statements if you want to declare a variable that can be shared by all
procedures in a file, but you want to be sure that you don’t accidentally use a variable name that is
already in use in another module.

Menu Summary in MapBasic Development Environment

The File Menu

The File menu provides commands that let you create, open, close, save, exit, and print MapBasic
programs.

• New opens a new edit window where you can type in your program.
• Open displays an existing file in an edit window. The file can be a MapBasic program file (for

example, dispatch.mb), a list of error messages (dispatch.err), or a MapInfo Professional
workspace file. Each workspace is actually just a text file containing an assortment of MapBasic
statements.
The Open dialog box lets you open two or more files at the same time. To select multiple files,
hold down the Shift key or the Ctrl key as you click on the file names.

Some text files are too big to be displayed in a MapBasic edit window. For information on
bypassing this limitation, see Limitations of the MapBasic Text Editor on page 31.

• Close closes the active edit window. If you have made changes in the current window, MapBasic
prompts you to either save or discard the changes before closing the window. Close is available
when at least one edit window is open.

• Close All closes all open edit windows. As with the Close command, MapBasic prompts you to
either save or discard any unsaved changes. Close All is available when at least one edit
window is open.

• Save saves the contents of the active edit window to disk. Save is available when you have
changed the contents of an edit window.

• Save As saves the contents of the active edit window under a new file name. Save As is
available when you have an open edit window.

• Revert discards any changes made to the edit window since it was last saved. Revert is
available when you have changed the contents of an edit window.

• Compile From File compiles an existing .mb file directly from the contents of the disk file,
without first displaying the contents of the file in an edit window. (As opposed to the Compile
Current File command on the Project menu, which compiles whatever program is in the active
38 MapBasic 11.5

Chapter 3: Using the Development Environment
Menu Summary in MapBasic Development Environment
edit window.) Use Compile From File to compile a program written in another text editor.
If there are compilation errors, Compile From File writes error messages to a text file named
filename.err. To view the errors file, choose File > Open.

• Link From File links an existing project without first displaying the contents of the project file in
an edit window. (As opposed to the Link Current Project command on the Project menu, which
links the current project.)

• Page Setup defines printer options (for example, paper size and orientation).
• Print prints the active edit window.

Print is available when there is at least one Edit window open.
• Exit exits the MapBasic environment. MapBasic prompts you to either save or discard any

changes that have not been saved.

The Edit Menu
The Edit menu provides commands that you can use when drafting and editing your MapBasic
program.

• Undo cancels the most recent change you made in the active edit window. When you select
Undo, MapBasic discards the last change you performed, and then the menu item changes to
read Redo. If you select Redo, MapBasic then re-applies the discarded change.
Undo is enabled when there is at least one open edit window, and you have made changes to
the text in that window.

• Cut copies the selected (highlighted) text to the Clipboard, then removes the selected text from
the edit window. The text remains on the Clipboard and you can later insert it elsewhere through
the Paste command (see below). Cut is available when text is selected in the active edit window.

• Copy copies the selected text to the Clipboard, but does not delete it. Copy is available when
text is selected in the active edit window.

• Paste copies the contents of the Clipboard to the active edit window at the current cursor
location. If you select text in the edit window, and then perform Paste, the text from the clipboard
replaces the selected text.
Paste is available when text is in the Clipboard and there is at least one open edit window.

• Clear deletes selected text without copying it to the Clipboard. Clear is available when there is
selected text in an open edit window.

• Select All selects the entire contents of the active edit window. Select All is available when
there is at least one open edit window.

The Search Menu
The Search menu helps you to locate and replace text in the edit window. Some of these commands
simplify the process of locating statements that have syntax errors.

• Find searches the active edit window for a particular text string. Find is available when there is
at least one open edit window. To find the next occurrence of a text string: Type the text string
you want to find into the Find text box. If you want the search to be case-sensitive, check the
Match Case check box.
When you click on the Find button, MapBasic searches forward from the current insertion point.
If MapBasic finds an occurrence of the Find string, the window scrolls to show that occurrence. If
the text is not found, MapBasic beeps.
MapBasic 11.5 39 User Guide

Menu Summary in MapBasic Development Environment
• Find Again finds the next occurrence of the string specified in the previous Find dialog box.
Find Again is available when there is at least one open edit window, and a Find operation has
been performed.

• Replace And Find Again replaces the selected text with text specified in the Find dialog box,
then finds and highlights the next occurrence of the search string.
Next Error is a feature of the compiler that helps you correct syntax errors. When a program
does not compile correctly, MapBasic displays a list of the errors at the bottom of the edit
window. Next Error scrolls forward through the edit window, to the line in your program which
corresponds to the next error in the error list. Next Error is available when there are error
messages in the active edit window.

• Previous Error is similar to Next Error. Previous Error scrolls backward through the edit
window to the previous item in the error list. Previous Error is available when there are error
messages relating to the active edit window.

• Go To Line prompts you to type in a line number, then scrolls through the edit window to that
line in your program.
A program may compile successfully, yet it may encounter an error at runtime. When this
happens, a dialog box appears, indicating that an error occurred at a certain line in your
program. Typically, you then want to return to the MapBasic development environment and go to
the appropriate line of your program. Go To Line is available when there is at least one edit
window open.

To replace all occurrences of a text string:

• Type the replacement string in the Replace With text box, and click the Replace All button.
MapBasic replaces all occurrences of the Find string with the Replace With string.

This replacement happens instantly, with no confirmation prompt.

To confirm each string replacement:

1. Choose Search > Find. The Find dialog box appears.

2. Fill in the Find and Replace With text boxes.

3. Within the Find dialog box, click the Find button.
MapBasic finds and highlights the next occurrence of the text string.
To replace the currently-highlighted string, press Ctrl-R (the hot-key for the Replace And Find
Again menu command).
If you do not want to replace the currently-highlighted occurrence of the Find string, press Ctrl-G
(the hot-key for the Find Again menu command).

The Project Menu
The Project menu lets you compile and run MapBasic programs, display program statistics, and
show or hide the error window.

• Select Project File presents a dialog box which lets you open an existing project file. A project
file is a text file that lists all the modules that comprise your application. Once you select a project
file, that project file becomes the active project file, and you can compile the file by choosing
Link Current Project.
40 MapBasic 11.5

Chapter 3: Using the Development Environment
Menu Summary in MapBasic Development Environment
• Compile Current File compiles the program in the active edit window. Compile Current File is
available if there is at least one open edit window.
If the compiler detects syntax errors in the program, MapBasic displays a list of errors at the
bottom of the edit window. If there are no syntax errors, MapBasic builds an mbx file (if the
module is a stand-alone program) or an object module (mbo) file.

• Link Current Project links the modules listed in the current project file, and produces an
executable application file (unless there are errors, in which case an error message displays).
Link Current Project is available whenever a project file is open.

• Run sends a message to the MapInfo Professional software, telling it to execute the application
in the front-most edit window.

• Get Info displays statistics about the program in the active edit window. Get Info is available if
there is at least one open edit window.

• Show/Hide Error List activates or deactivates the error list associated with the active edit
window. If the error list is currently displayed, the menu item reads Hide Error List. If the error
list is currently hidden, the menu item reads Show Error List. Show/Hide Error List is available
when there is an open edit window with associated error messages.

The Window Menu
If you have more than one edit window open, MapBasic’s Window menu lets you arrange your
windows or switch which window is active.

Commands on this menu are available when there is at least one edit window open.

• Tile Windows arranges the edit windows in a side-by-side pattern.
• Cascade Windows arranges the edit windows in an overlapping pattern.
• Arrange Icons organizes the icons that correspond to your minimized edit windows. You can

click an edit window’s minimize button to temporarily shrink that window down to an icon.
• Text Style lets you choose the font in which the window is displayed. The font you choose is

applied to the entire window.
• The bottom of the Window menu lists a menu item for each open edit window. To make one of

the edit windows active (i.e., to bring that window to the front), select the appropriate item from
the Window menu.

The Help Menu
Use the Help menu to access online help. The online help file contains descriptions of all statements
and functions in the MapBasic language. Help also includes a comprehensive set of cross-reference
screens to help you find the name of the statement you need.

• Contents opens the help window at the Contents screen. From there, you can navigate through
help by clicking on hypertext jumps, or you can click on the Search button to display the Search
dialog box.

• Search For Help On jumps directly to the Search dialog box.
• How To Use Help displays a help screen that explains how to use online help.
• Check for Update opens the Pitney Bowes Software Inc. web site focusing on a page that lists

any available updates to the product.
MapBasic 11.5 41 User Guide

Menu Summary in MapBasic Development Environment
• About MapBasic displays the About dialog box, which shows you copyright and version number
information.

Many of the help screens contain brief sample programs. You can copy those program
fragments onto the clipboard, then paste them into your program. To copy text from a help
screen, choose Edit > Copy from the help window’s Edit menu or by dragging text directly
out of the help window, and drop it into your program.
42 MapBasic 11.5

4

MapBasic Fundamentals
Every MapBasic programmer should read this chapter, which describes many
fundamental aspects of the MapBasic programming syntax.

Topics in this section:

General Notes on MapBasic Syntax .44
Expressions .50
Looping, Branching, and Other Flow-Control60
Procedures .64
Procedures That Act As System Event Handlers68
Tips for Handler Procedures .71
Compiler Instructions .72
Program Organization .74

General Notes on MapBasic Syntax
General Notes on MapBasic Syntax
Before getting into discussions of specific MapBasic statements, it is appropriate to make some
observations about MapBasic program syntax in general.

Comments
In MapBasic, as in some other BASIC languages, the apostrophe character (’) signifies the
beginning of a comment. When an apostrophe appears in a program, MapBasic treats the
remainder of the line as a comment, unless the apostrophe appears within a quoted string constant.

Case-Sensitivity
The MapBasic compiler is case-insensitive. You can enter programs with UPPER-CASE, lower-
case, or Mixed-Case capitalization.

For clarity, this manual capitalizes the first letter of each MapBasic language keyword. Program
variables appear in lower-case. For example, in the following program sample, the words If and
Then have proper capitalization because they are keywords in MapBasic, whereas the word
counter appears in lower-case, because it is the name of a variable.

If counter > 5 Then
Note "Count is too high"

End If

Continuing a Statement Across Multiple Lines
When you write a MapBasic program, you can continue longer statements across more than one
line. For example, the following code sample continues the If…Then statement across several lines:

If counter = 55
Or counter = 34 Then

Note "Counter is invalid"
End If

Codes Defined In mapbasic.def
Many MapBasic statements and function calls will not work properly unless the following statement
appears at or near the top of your program:

Include "mapbasic.def"

The file mapbasic.def is a text file containing definitions for many standard MapBasic codes. As a
rule, the codes defined in mapbasic.def are all in upper-case (for example, TRUE, FALSE, BLACK,
WHITE, CMD_INFO_X, OBJ_INFO_TYPE, etc.). As you read the program examples that appear in
the MapBasic documentation, you will see many such codes. For example:

If CommandInfo(CMD_INFO_DLG_OK) Then
44 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
General Notes on MapBasic Syntax
If your program references standard codes (such as CMD_INFO_DLG_OK in the example above),
your program must issue an Include statement to include mapbasic.def. If you omit the Include
statement, your program will generate a runtime error (for example, “Variable or Field
CMD_INFO_DLG_OK not defined”).

Typing Statements Into the MapBasic Window
The MapInfo Professional software has a feature known as the MapBasic Window. Typing
statements directly into the MapBasic Window helps you to learn MapBasic statement syntax.
However, some restrictions apply to the MapBasic window:

• Some MapBasic statements may not be entered through the MapBasic window, although you
may use those statements within compiled MapBasic programs. The general rule is flow-control
statements (such as If…Then, For…Next, and GoTo) do not work in the MapBasic window.

• To determine whether you can type a particular statement into the MapBasic window, see the
MapBasic Reference Guide or online Help. If a statement does not work in the MapBasic
window, that statement’s entry in the MapBasic Reference Guide indicates the restriction.

• When you type statements directly into MapInfo Professional’s MapBasic Window, you must
take special steps if you want to continue the statement across multiple lines. At the end of the
each partial line, type Ctrl-Enter instead of Enter. After you have typed the entire statement,
highlight the lines that make up the statement, and press Enter.

• Codes that are defined in mapbasic.def (for example, BLACK, WHITE, etc.) may not be entered
in the MapBasic window. However, each code has a specific value, which you can determine by
reading mapbasic.def; for example, the code BLACK has a numerical value of zero (0). When
you are entering commands into the MapBasic window, you must use the actual value of each
code, instead of using the name of the code (for example, use zero instead of “BLACK”).

• Each statement that you type into the MapBasic window is limited to 256 characters.

Variables
MapBasic’s syntax for declaring and assigning values to variables is much like the syntax of other
modern BASIC languages. However, MapBasic supports some types of variables that are not
available in other languages (such as the Object variable; for a complete list of MapBasic variable
types, see the description of the Dim statement in the MapBasic Reference Guide).

What Is a Variable?

Think of a variable as a very small piece of your computer’s memory. As you write programs, you will
find that you need to temporarily store various types of information in memory. To do this, you
declare one or more variables. Each variable has a unique name (for example, counter, x, y2,
customer_name). For each variable that you declare, MapBasic sets aside a small piece of memory.
Thereafter, each variable can contain one small piece of information.

Declaring Variables and Assigning Values to Variables

The Dim statement defines variables. You must declare every variable that you use, and the
variable declaration must appear before the variable is used.

Use the equal operator (=) to assign a value to a variable.
MapBasic 11.5 45 User Guide

General Notes on MapBasic Syntax
The following example declares an Integer variable and assigns a value of 23 to that variable:

Dim counter As Integer
counter = 23

A single Dim statement can declare multiple variables, provided that the variable names are
separated by commas. The following Dim statement declares three floating-point numeric variables:

Dim total_distance, longitude, latitude As Float
longitude = -73.55
latitude = 42.917

A single Dim statement can declare variables of different types. The following statement declares
two Date variables and two String variables:

Dim start_date, end_date As Date,
first_name, last_name As String

Variable Names

Variable names must conform to the following rules:

• Each variable name can be up to thirty-one characters long.
• Variable names may not contain spaces.
• Each variable name must begin with a letter, an underscore (_) or a tilde (~).
• Each variable name can consist of letters, numbers, pound signs (#), or underscore characters

(_).
• A variable name may end in one of the following characters: $, %, &, !, or @. In some BASIC

languages, these characters dictate variable types. In MapBasic, however, these characters
have no special significance.

• You may not use a MapBasic keyword as a variable name. Thus, you may not declare variables
with names such as If, Then, Select, Open, Close, or Count. For a list of reserved keywords,
see the discussion of the Dim statement in the MapBasic Reference Guide.

Data Types

MapBasic supports the following types of variables:

Type Description

SmallInt Integer value between -32767 and 32767; stored in two bytes.

Integer Integer value between -2 billion and 2 billion; stored in four bytes.

Float Floating-point value; stored in eight-byte IEEE format.

String Variable-length character string, up to 32,767 characters long.

String * n Fixed-length character string, n characters long (up to 32,767 characters).

Logical True or False.

Date Date.
46 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
General Notes on MapBasic Syntax
Fixed-length and variable-length String variables
MapBasic supports both fixed-length and variable-length String variables. A variable-length String
variable can store any string value, up to 32,767 characters long. A fixed-length String variable,
however, has a specific length limit, which you specify in the Dim statement.

To declare a variable-length String variable, use String as the variable type. To declare a fixed-
length String variable, follow the String keyword with an asterisk (*), followed by the length of the
string in bytes. In the following example, full_name is declared as a variable-length String variable,
while employee_id is declared as a fixed-length String variable, nine characters long:

Dim full_name As String,
employee_id As String * 9

Like other BASIC languages, MapBasic automatically pads “every fixed-length String
variable with blanks, so that the variable always fills the allotted space. Thus, if you declare a
fixed-length String variable with a size of five characters, and then you assign the string
“ABC” to the variable, the variable will actually contain the string “ABC ” (“ABC” followed by
two spaces). This feature is helpful if you need to write an application that produces
formatted output.

Array Variables
To declare an array variable, follow the variable name with the size of the array enclosed in
parentheses. The array size must be a positive integer constant expression. The following Dim
statement declares an array of ten Date variables:

Dim start_date(10) As Date

To refer to an individual element of an array, use the syntax:

array_name(element-number)

Thus, the following statement assigns a value to the first element of the start_date array:

start_date(1) = "6/11/93"

To resize an array, use the ReDim statement. Thus, in cases where you do not know in advance
how much data your program will need to manage—perhaps because you do not know how much
data the user will enter—your program can use the ReDim statement to enlarge the array as
needed. Use the UBound() function to determine the current size of an array.

Object Graphical object, such as a line or a circle; see Graphical Objects for details.

Alias Column reference of a table; see Working With Tables for details.

Pen Pen (line) style setting; see Graphical Objects.

Brush Brush (fill) style setting; see Graphical Objects.

Type Description
MapBasic 11.5 47 User Guide

General Notes on MapBasic Syntax
The following example declares an array of String variables called name_list. The latter part of the
program increases the size of the array by ten elements.

Dim counter As Integer, name_list(5) As String
...
counter = UBound(names) ’ Determine current array size
ReDim names(counter + 10)’ Increase array size by 10

MapBasic arrays are subject to the following rules:

• MapBasic supports only one-dimensional arrays.
• In MapBasic, the first element in an array always has an index of one. In other words, in the

example above, the first element of the names array is names(1).

If you need to store more data than will fit in an array, you may want to store your data in a table. For
more information on using tables, see Working With Tables.

MapBasic initializes the contents of numeric arrays and variables to zero when they are defined. The
contents of string arrays and variables are initially set to the null string.

Custom Data Types (Data Structures)
Use the Type…End Type statement to define a custom data type. A custom data type is a grouping
of one or more variables types. Once you define a custom data type, you can declare variables of
that type by using the Dim statement.

The following program defines a custom data type, employee, then declares variables of the
employee type.

Type employee
name As String
title As String
id As Integer

End Type
Dim manager, staff(10) As employee

Each component of a custom data type is referred to as an element. Thus, the employee data type
in the preceding example has three elements: name, title, and id. To refer to an individual element of
an array, use the generic syntax:

variable_name.element_name

The following statement assigns values to each element of the manager variable:

manager.name = "Joe"
manager.title = "Director of Publications"
manager.id = 111223333

You can declare an array of variables of a custom type. The following statement assigns values to
some of the elements of the first item in the employee array:

staff(1).name = "Ed"
staff(1).title = "Programmer"
48 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
General Notes on MapBasic Syntax
Type…End Type statements must appear outside of any sub procedure definition. Sub procedures
are discussed later in this chapter. Typically, Type…End Type statements appear at or near the
very top of your program. A Type definition may include elements of any other type, including
previously-defined custom data types. You can also declare global variables and arrays of custom
data types.

Global Variables
Variables declared with the Dim statement are local variables. A local variable may only be used
within the procedure where it is defined. MapBasic also lets you declare global variables, which may
be referenced within any procedure, anywhere in the program.

To declare a global variable, use the Global statement. The syntax for the Global statement is
identical to the syntax for the Dim statement, except that the keyword Global appears instead of the
keyword Dim. Thus, the following Global statement declares a pair of global Integer variables:

Global first_row, last_row As Integer

Global statements must appear outside of any sub procedure definition. Sub procedures are
discussed later in this chapter. Typically, Global statements appear at or near the top of the
program.

The following program declares several global variables, then references those global variables
within a sub procedure.

Declare Sub Main
Declare Sub initialize_globals
Global gx, gy As Float ’ Declare global Float variables
Global start_date As Date ’ Declare global Date variable
Sub Main

Dim x, y, z As Float ’ Declare Main proc’s local vars
Call initialize_globals
...

End Sub
Sub initialize_globals

gx = -1 ’ Assign global var: GX
gy = -1 ’ Assign global var: GY
start_date = CurDate() ’ Assign global var: START_DATE

End Sub

Whenever possible, you should try to use local variables instead of global variables, because each
global variable occupies memory for the entire time that your program is running. A local variable,
however, only occupies memory while MapBasic is executing the sub procedure where the local
variable is defined.

MapBasic global variables can be used to exchange data with other software packages. When an
application runs on Windows, other applications can use Dynamic Data Exchange to read and
modify the values of MapBasic global variables.
MapBasic 11.5 49 User Guide

Expressions
Scope of Variables
A sub procedure may declare a local variable which has the same name as a global variable. Thus,
even if a program has a global variable called counter, a sub procedure in that program may also
have a local variable called counter:

Declare Sub Main
Declare Sub setup
Global counter As Integer
...
Sub setup

Dim counter As Integer
counter = 0
...

End Sub

If a local variable has the same name as a global variable, then the sub procedure will not be able to
read or modify the global variable. Within the sub procedure, any references to the variable will
affect only the local variable. Thus, in the example above, the statement: counter = 0 has no
effect on the global counter variable.

Upon encountering a reference to a variable name, MapBasic attempts to interpret the reference as
the name of a local variable. If there is no local variable by that name, MapBasic attempts to
interpret the reference as the name of a global variable. If there is no global variable by that name,
MapBasic tries to interpret the reference as a reference to an open table. Finally, if, at runtime, the
reference cannot be interpreted as a table reference, MapBasic generates an error message.

Expressions
In this section, we take a closer look at expressions. An expression is a grouping of one or more
variables, constant values, function calls, table references, and operators.

What is a Constant?
An expression can be very simple. For example, the statement: counter = 23 assigns a simple
integer expression namely, the value 23 to the variable, counter. We refer to the expression 23 as a
numeric constant. You might think of a constant as a specific value you can assign to a variable.

The following program declares a String variable, then assigns a string constant (the name “Fred
Mertz”) to the variable:

Dim name As String
name = "Fred Mertz"

The syntax for numeric expressions is different than the syntax for string expressions: string
constants must be enclosed in double-quotation marks (for example, “Fred Mertz”) whereas numeric
constants (for example, 23) are not. You cannot assign a String expression, such as “Fred Mertz,” to
a numeric variable. For more information on constant expressions, see A Closer Look At
Constants on page 52.
50 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Expressions
What is an Operator?
An operator is a special character (for example, +, *, >) or a word (for example, And, Or, Not) which
acts upon one or more constants, variables, or other values. An expression can consist of two or
more values that are combined through an operator. In the following example, the plus operator (+)
is used within the expression y + z, to perform addition. The result of the addition (the sum) is then
assigned to the variable, x:

Dim x, y, z As Float
y = 1.5
z = 2.7
x = y + z

In this example, the plus sign (+) acts as an operator – specifically, a numeric operator. Other
numeric operators include the minus operator (-), which performs subtraction; the asterisk (*), which
performs multiplication; and the caret (^), which performs exponentiation. A complete list of numeric
operators appears later in this chapter.

The plus operator can also be used within a String expression to concatenate separate strings into
one string. The following program builds a three-part string expression and stores the string in the
variable, full_name:

Dim first_name, last_name, middle_init, full_name As String
first_name = "Fred "
middle_init = "R. "
last_name = "Mertz"
full_name = first_name + middle_init + last_name

’ At this point, the variable full_name contains:
’ Fred R. Mertz

What is a Function Call?
The MapBasic language supports many different function calls. Each function has a different
purpose. For example, the Sqr() function calculates square root values, while the UCase$()
function converts a text string to uppercase. When you enter a function name into your program,
your program calls the named function, and the function returns a value.

A function call can comprise all or part of an expression. For example, the following statement
assigns a value to the variable, x, based on the value returned by the Minimum() function:

x = Minimum(y, z)

The MapBasic function call syntax is similar to that of other modern BASIC languages. The function
name (for example, “Minimum”, in the example above) is followed by a pair of parentheses. If the
function takes any parameters, the parameters appear inside the parentheses. If the function takes
more than one parameter, the parameters are separated by commas (the Minimum() function
takes two parameters).

A function call is different than a generic statement, in that the function call returns a value. A
function call cannot act as a stand-alone statement; instead, the value returned by the function must
be incorporated into some larger statement. Thus, the following program consists of two statements:
MapBasic 11.5 51 User Guide

Expressions
a Dim statement declares a variable, x; and then an assignment statement assigns a value to the
variable. The assignment statement incorporates a function call (calling the Sqr() function to
calculate the square root of a number):

Dim x As Float
x = Sqr(2)

Similarly, the following program uses the CurDate() function, which returns a Date value
representing the current date:

Dim today, yesterday As Date
today = CurDate()
yesterday = today - 1

The CurDate() function takes no parameters. When you call a function in MapBasic, you must
follow the function name with a pair of parentheses, as in the example above, even if the function
takes no parameters.

MapBasic supports many standard BASIC functions, such as Chr$() and Sqr(), as well as a variety
of special geographic functions such as Area() and Perimeter().

A Closer Look At Constants
A constant is a specific value that does not change during program execution. Programmers
sometimes refer to constants as “hard-coded” expressions, or as “literals.”

Numeric Constants

Different types of numeric variables require different types of constants. For instance, the constant
value 36 is a generic numeric constant. You can assign the value 36 to any numeric variable,
regardless of whether the variable is Integer, SmallInt, or Float. The value 86.4 is a floating-point
numeric constant.

Hexadecimal Numeric Constants

MapBasic 4.0 and later supports hexadecimal numeric constants using the Visual Basic syntax:
&Hnumber (where number is a hexadecimal number). The following example assigns the
hexadecimal value 1A (which equals decimal 26) to a variable:

Dim i_num As Integer
i_num = &H1A

Numeric constants may not include commas (thousand separators). Thus, the following statement
will not compile correctly

counter = 1,250,000 ’ This won’t work!

If a numeric constant includes a decimal point (decimal separator), the separator character must be
a period, even if the user’s computer is set up to use some other character as the decimal separator.

String Constants

A String constant is enclosed in double quotation marks. For example:

last_name = "Nichols"
52 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Expressions
Each string constant can be up to 256 characters long.

The double quotation marks are not actually part of the string constant, they merely indicate the
starting and ending points of the string constant. If you need to incorporate a double-quotation mark
character within a string constant, insert two consecutive double-quotation marks into the string. The
following program illustrates how to embed quotation marks within a string:

Note "The table ""World"" is already open."

Logical Constants

Logical constants can be either one (1) for TRUE or zero (0) for FALSE. Many MapBasic programs
refer to the values TRUE and FALSE; note that TRUE and FALSE are actually defined within the
standard MapBasic definitions file, mapbasic.def. To refer to standard definitions like TRUE and
FALSE, a program must issue an Include statement, to include mapbasic.def. For example:

Include "mapbasic.def"
Dim edits_pending As Logical
edits_pending = FALSE

Date Constants

To specify a date constant, enter an eight-digit Integer with the format YYYYMMDD. This example
specifies the date December 31, 1995:

Dim d_enddate As Date
d_enddate = 19951231

Alternately, you can specify a string expression that acts as a date constant:

d_enddate = "12/31/1995"

When you specify a string as a date constant, the year component can be four digits or two digits:

d_enddate = "12/31/95"

You can omit the year, in which case the current year is used:

d_enddate = "12/31"

CAUTION: Using a string as a date constant is sometimes unreliable, because the results
you get depend on how the user’s computer is configured. If the user’s
computer is configured to use Month/Day/Year formatting, then “06/11/95”
represents June 11, but if the computer is set up to use Day/Month/Year
formatting, then “06/11/95” represents the 6th of November.

If the user’s computer is set up to use “-” as the separator, MapInfo Professional cannot convert
string expressions such as “12/31” into dates.

To guarantee predictable results, use the NumberToDate() function, which accepts the eight-digit
numeric date syntax. (Numeric date constants, such as 19951231, are not affected by how the
user’s computer is configured.) If you need to use strings as date values—perhaps because you are
reading date values from a text file—use the Set Format statement to control how the strings are
interpreted. For Set Format statement details, see the MapBasic Reference Guide or online Help.

To configure date formatting options under Microsoft Windows, use the Regional Settings control
panel.
MapBasic 11.5 53 User Guide

Expressions
Alias Constants

Alias variables are discussed in detail in Working With Tables. You can assign a string expression
to a variable of type Alias. For example:

Dim column_name As Alias
column_name = "City"

The following table contains examples of various types of constants.

Types Sample assignments Notes

Integer i = 1234567

SmallInt m = 90

Float f = 4
size = 3.31
debt = 3.4e9

String s_mesg = "Fred Mertz" Enclose string in double
quotes. To embed quotes in a
string, type two quotation
marks. To include special
characters use the Chr$()
function.

Logical edits_pending = 1
edits_pending = TRUE

1= true, 0 = false
The MapBasic definition file
defines TRUE and FALSE.

Date d_starting = 19940105
date_done = "3/23/88"
paiddate = "12-24-1993"
yesterday = CurDate() - 1

Alias col_name = "Pop_1990"
col_name = "COL1"

Aliases can be assigned like
strings. See Working With
Tables for more information
about Alias variables.

Pen hwypen = MakePen(1, 3, BLACK) There is no constant syntax
for Pen expressions.

Brush zbrush = MakeBrush(5, BLUE, WHITE) There is no Brush constant
syntax.

Font lbl_font = MakeFont("Helv", 1, 20,
BLACK, WHITE)

There is no Font constant
syntax.
54 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Expressions
Variable Type Conversion
MapBasic provides functions for converting data of one type to another type. For instance, given a
number, you can produce a string representing the number calling the function Str$():

Dim q1, q2, q3, q4, total As Float, s_message As String
...
total = q1 + q2 + q3 + q4
s_message = "Grand total: " + Str$(total)

A Closer Look At Operators
Operators act on one or more values to produce a result. Operators can be classified by the data
types they use and the types of results they produce.

Numeric Operators

Each of the operators in the following table is a numeric operator. Two numeric values can be
combined using a numeric operator to produce a numeric result.

The \ and Mod operators perform integer division. For example:

Symbol loc_sym = MakeSymbol(44, RED, 16) There is no Symbol constant
syntax.

Object path = CreateLine(73.2, 40, 73.6, 40.4) There is no Object constant
syntax.

Types Sample assignments Notes

Operator Performs Example

+ addition x = a + b

- subtraction x = a - b

* multiplication x = a * b

/ division x = a / b

\ integer division x = a \ b

Mod integer remainder x = a Mod b

^ exponentiation x = a ^ b
MapBasic 11.5 55 User Guide

Expressions
The minus sign (-) operator can be used to negate a numeric value

x = -23

String Operators

The plus operator (+) lets you concatenate two or more string expressions into one long string
expression.

Note "Employee name: " + first_name + " " + last_name

You can use the ampersand operator (&) instead of the plus operator when concatenating strings.
The & operator forces both operands to be strings, and then concatenates the strings. This is
different than the + operator, which can work with numbers or dates without forcing conversion to
strings.

The & character is also used to specify hexadecimal numbers (&Hnumber). When you use &
for string concatenation, make sure you put a space before and after the & so that the
MapBasic compiler does not mistake the & for a hex number prefix.

The Like operator performs string comparisons involving wild-card matching. The following example
tests whether the contents of a String variable begins with the string “North”:

If s_state_name Like "North%" Then ...

The Like operator is similar to the Like() function. For a description of the Like() function, see the
MapBasic Reference Guide or online Help.

Date Operators

The plus and minus operators may both be used in date expressions, as summarized below.

The following example uses the CurDate() function to determine the current date, and then
calculates other date expressions representing tomorrow’s date and the date one week ago:

Dim today, one_week_ago, tomorrow As Date,
days_elapsed As Integer

10 / 8 returns 1.25

10 \ 8 returns 1 (the integer portion of 1.25)

10 Mod 8 returns 2 (the remainder after dividing 10 by 8)

Expression Returns

date + integer a Date value, representing a later date

date - integer a Date value, representing an earlier date

date - date an Integer value, representing the number of elapsed days
56 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Expressions
today = CurDate()
tomorrow = today + 1
one_week_ago = today - 7
’ calculate days elapsed since January 1:
days_elapsed = today - StringToDate("1/1")

Comparison Operators

A comparison operator compares two items of the same general type to produce a logical value of
TRUE or FALSE. Comparison operators are often used in conditional expressions (for example, in
an If…Then statement).

Each of these comparison operators may be used to compare string expressions, numeric
expressions, or date expressions. Note, however, that comparison operators may not be used to
compare Object, Pen, Brush, Symbol, or Font expressions.

The Between…And… comparison operator lets you test whether a data value is within a range. The
following If…Then statement uses a Between…And… comparison:

If x Between 0 And 100 Then
Note "Data within range."

Else
Note "Data out of range."

End If

The same program could be written another way:

If x >= 0 And x <= 100 Then
Note "Data within range."

Else
Note "Data out of range."

End If

Operator Returns TRUE if Example

= equal to If a = b Then ...

<> not equal to If a <> b Then ...

< less than If a < b Then ...

> greater than If a > b Then ...

<= less than or equal to If a <= b Then ...

>= greater than or equal to If a >= b Then ...

Between…And…value is within range If x Between f_low And
f_high Then...
MapBasic 11.5 57 User Guide

Expressions
When you use the = operator to compare two strings, MapBasic examines the entire length of both
strings, and returns TRUE if the strings are identical. String comparisons are not case sensitive; so
this If…Then statement considers the two names (“Albany” and “ALBANY”) to be identical:

Dim city_name As String
city_name = "ALBANY"
If city_name = "Albany" Then

Note "City names match."
End If

If you wish to perform case-sensitive string comparison, use the StringCompare() function, which
is described in the MapBasic Reference Guide.

Be careful when comparing fixed-length and variable-length strings. MapBasic automatically
pads every fixed-length string with spaces, if necessary, to ensure that the string fills the
allotted space. Variable-length strings, however, are not padded in this manner. Depending
on your data and variables, this difference might mean that two seemingly-identical strings
are not actually equal.

You can use the RTrim$() function to obtain a non-padded version of a fixed-length string. You then
can compare the value returned by RTrim$() with a variable-length string, without worrying about
interference from padded spaces.

Logical Operators

Logical operators operate on logical values to produce a logical result of TRUE or FALSE:

For example, the following If…Then statement performs two tests, testing whether the variable x is
less than zero, and testing whether x is greater than ten. The program then displays an error
message if either test failed.

If x < 0 Or x > 10 Then
Note "Number is out of range."

End If

Operator Returns TRUE if Example

And both operands are TRUE If a And b Then…

Or either operand is TRUE If a Or b Then…

Not operand is FALSE. If Not a Then…
58 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Expressions
Geographic Operators

These operators act on Object expressions to produce a logical result of TRUE or FALSE.

For a more complete discussion of graphic objects, see Graphical Objects.

MapBasic Operator Precedence
Some operators have higher precedence than others. This means that in a complex expression
containing multiple operators, MapBasic follows certain rules when determining which operations to
carry out first. To understand how MapBasic processes complex expressions, you must be familiar
with the relative precedence of MapBasic’s operators.

Consider the following mathematical assignment:

x = 2 + 3 * 4

This assignment involves two mathematical operations addition and multiplication. Note that the end
result depends on which operation is performed first. If you perform the addition first (adding 2 + 3, to
obtain 5), followed by the multiplication (multiplying 5 * 4), the end result is 20. In practice, however,
multiplication has a higher precedence than addition. This means that MapBasic performs the
multiplication first (multiplying 3 * 4, to obtain 12), followed by the addition (adding 2 + 12, to obtain
14).

You can use parentheses to override MapBasic’s default order of precedence. The following
assignment uses parentheses to ensure that addition is performed before multiplication:

x = (2 + 3) * 4

Operator Returns TRUE if Example

Contains first object contains centroid of
second object

If a Contains b Then...

Contains Part first object contains part of second
object

If a Contains Part b Then...

Contains Entire first object contains all of second
object

If a Contains Entire b Then...

Within first object’s centroid is within
second object

If a Within b Then...

Partly Within part of first object is within second
object

If a Partly Within b Then...

Entirely Within all of first object is within second
object

If a Entirely Within b Then...

Intersects the two objects intersect at some
point

If a Intersects b Then...
MapBasic 11.5 59 User Guide

Looping, Branching, and Other Flow-Control
The following table identifies the precedence of each MapBasic operator.

Operators appearing on the same row have equal precedence. Operators of higher priority are
processed first. Operators of the same precedence are evaluated left to right in the expression,
except exponentiation, which evaluates from right to left.

Looping, Branching, and Other Flow-Control
Flow-control statements affect the order in which other statements are executed. MapBasic has
three main types of flow-control statements:

• Branching statements cause MapBasic to skip over certain statements in your program (for
example, If…Then, GoTo).

• Looping statements cause MapBasic to repeatedly execute one or more designated statements
in your program (for example, For…Next, Do…While).

• Other statements provide special flow-control (for example, End Program).

If…Then Statement
MapBasic’s If…Then statement is very similar to comparable If…Then statements in other
languages. The If…Then statement tests a condition; if the condition is TRUE, MapBasic executes
the statements which follow the Then keyword. In the following example, MapBasic displays an
error message and calls a sub-procedure if a counter variable is too low:

If counter < 0 Then
Note "Error: The counter is too low."
Call reset_counter

End If

An If…Then statement can have an optional Else clause. In the event that the original test condition
was FALSE, MapBasic executes the statements following the Else keyword instead of executing the
statements following the Then keyword.

Highest priority:

Lowest Priority:

parentheses

exponentiation

negation

multiplication, division, Mod, integer division

addition, subtraction, string concatenation (&)

geographic operators, comparison operators, Like

Not

And

Or
60 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Looping, Branching, and Other Flow-Control
The following example demonstrates the optional Else clause.

If counter < 0 Then
Note "Error: The counter is too low."
Call reset_counter

Else
Note "The counter is OK."

End If

An If…Then statement can also have one or more optional ElseIf clauses. The ElseIf clause tests
an additional condition. If the statement includes an ElseIf clause, and if the original condition turned
out to be FALSE, MapBasic will test the ElseIf clause, as in the following example:

If counter < 0 Then
Note "Error: The counter is too low."
Call reset_counter

ElseIf counter > 100 Then
counter = 100
Note "Error: The counter is too high; resetting to 100."

Else
Note "The counter is OK."

End If

ElseIf is a single keyword. A single If…Then statement can include a succession of two or
more ElseIf clauses, subsequently testing for condition after condition. However, if you want
to test for more than two or three different conditions, you may want to use the Do…Case
statement (described below) instead of constructing an If…Then statement with a large
number of ElseIf clauses.

Do Case Statement
The Do Case statement performs a series of conditional tests, testing whether a certain expression
is equal to one of the values in a list of potential values. Depending on which value the expression
matches (if any), MapBasic carries out a different set of instructions.

The following example tests whether the current month is part of the first, second, third, or fourth
quarter of the fiscal year. If the current month is part of the first quarter (January-February-March),
the program assigns a text string an appropriate title (“First Quarter Results”). Alternately, if the
current month is part of the second quarter, the program assigns a different title (“Second Quarter
Results”), etc.

Dim current_month, quarter As SmallInt,
report_title As String

current_month = Month(CurDate())
’ At this point, current_month is 1 if current date
’ is in January, 2 if current date is in February, etc.
Do Case current_month

Case 1, 2, 3
’ If current month is 1 (Jan), 2 (Feb) or 3 (Mar),
’ we’re in the First fiscal quarter.
’ Assign an appropriate title.
MapBasic 11.5 61 User Guide

Looping, Branching, and Other Flow-Control
report_title = "First Quarter Results"
quarter = 1

Case 4, 5, 6
report_title = "Second Quarter Results"
quarter = 2

Case 7, 8, 9
report_title = "Third Quarter Results"
quarter = 3

Case Else
’
’ If current month wasn’t between 1 and 9, then
’ current date must be in the Fourth Quarter.
’
report_title = "Fourth Quarter Results"

quarter = 4
End Case

Case Else is an optional clause of the Do Case statement. If a Do Case statement includes
a Case Else clause, and if none of the previous Case clauses matched the expression being
tested, MapBasic carries out the statements following the Case Else clause. The Case Else
clause must be the final clause in the Do Case construction.

GoTo Statement
The GoTo statement tells MapBasic to go to a different part of the program and resume program
execution from that point. The GoTo statement specifies a label. For the GoTo statement to work,
there must be a label elsewhere within the same procedure. A label is a name which begins a line.
Each label must end with a colon (although the colon is not included in the GoTo statement). See
the example below.

If counter < 0 Then
GoTo get_out

End If
...
get_out:
End Program

Many programming professionals discourage the use of GoTo statements. Careful use of other flow-
control statements, such as If…Then, usually eliminates the need to use GoTo statements. Thus, if
you like, you may avoid using GoTo statements.

For…Next Statement
The For…Next statement sets up a loop that executes a specific number of times. With each
iteration of the loop, MapBasic executes all statements that appear between the For and Next
clauses. When creating a For…Next loop, you must specify the name of a numeric variable as a
counter. You must also specify that counter variable’s starting and ending values. With each
iteration of the loop, MapBasic increments the counter variable by some step value. By default, this
step value is one. To use a different increment, include the optional Step clause.
62 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Looping, Branching, and Other Flow-Control
The following example uses a For…Next loop to add the values from an array of numbers:

Dim monthly_sales(12), grand_total As Float,
next_one As SmallInt

...
For next_one = 1 To 12

grand_total = grand_total + monthly_sales(next_one)
Next

At the start of the For…Next statement, MapBasic assigns the start value to the counter variable. In
the example above, MapBasic assigns a value of one to the variable: next_one. MapBasic then
executes the statements that appear up to the Next keyword. After each iteration of the loop,
MapBasic increments the counter variable. If the counter variable is less than or equal to the end
value (for example, if next_one is less than or equal to twelve), MapBasic performs another iteration
of the loop.

A For…Next loop halts immediately if it encounters an Exit For statement. This allows you to
conditionally halt the loop prematurely.

See the MapBasic Reference Guide for more information on the For…Next loop.

Do…Loop
The Do…Loop statement continually executes a group of statements for as long as a test condition
remains TRUE or, optionally, for as long as the condition remains FALSE.

There are different forms of the Do…Loop statement, depending on whether you want to test the
looping condition before or after the body of the statements that are executed. The following
program tests the loop condition at the end of the loop:

Dim sales_total, new_accounts(10) As Float,
next_one As SmallInt

next_one = 1
Do

sales_total = sales_total + new_accounts(next_one)
next_one = next_one + 1

Loop While next_one <= UBound(new_accounts)

Note that the preceding loop always executes for at least one iteration, because the looping
condition is not tested until the end of the loop.

The following loop tests the loop condition at the start of the loop. Because the condition is tested at
the start of the loop, the statements within the body of the loop may never be executed. If the test
condition is FALSE from the beginning, the statements within the following Do…Loop will never be
executed.

Dim sales_total, new_accounts(10) As Float,
next_one As SmallInt

next_one = 1
Do While next_one <= UBound(new_accounts)

sales_total = sales_total + new_accounts(next_one)
next_one = next_one + 1

Loop
MapBasic 11.5 63 User Guide

Procedures
In the examples above, both Do…Loop statements included the keyword While; thus, both loops
continue while the test condition remains TRUE. Alternately, a Do…Loop can use the Until keyword
instead of the keyword While. If a Do…Loop statement specifies Until, the loop will continue only
for as long as the test condition remains FALSE.

A Do…Loop statement halts immediately if it encounters an Exit Do statement. This statement
allows you to conditionally terminate a loop prematurely.

While…Wend Loop
MapBasic supports the conventional BASIC While…Wend loop syntax. A While…Wend statement
is very similar to a Do While…Loop statement.

If you are an experienced BASIC programmer, and you therefore are in the habit of using
While…Wend statements, you can continue to use While…Wend statements as you use
MapBasic. Note, however, that the Do…Loop statement syntax is in some ways more powerful than
the While…Wend syntax. You can exit a Do…Loop statement prematurely, through the Exit Do
statement, but there is no corresponding statement for exiting a While…Wend loop.

See the MapBasic Reference Guide for more information on the While…Wend loop.

Ending Your Program
The End Program statement halts the MapBasic application, removes any custom menu items
created by the application, and removes the application from memory. End Program also closes
any files opened by the application (through the Open File statement), but it does not close any
open tables.

The End Program statement is not required. In fact, there are situations where you should be
careful not to issue an End Program statement. For example, if your application adds menu items to
a MapInfo Professional menu, you probably want your application to remain running for the duration
of the MapInfo Professional session, because you want your custom menu items to remain available
for the entire session. In such cases, you should be careful not to issue the End Program
statement, because it would halt your application and remove your application’s custom menu items.
For a complete discussion of custom menus, see Creating the User Interface.

Ending Your Program and MapInfo Professional
The End MapInfo statement halts the MapBasic application (much as the End Program statement
does), and then exits the MapInfo Professional software as well.

Procedures
Procedures (often referred to as sub-procedures) are an integral part of the MapBasic program
architecture. A typical MapBasic program is comprised of numerous sub-procedures; each sub-
procedure contains a group of statements that perform a specific task. By breaking your program
into several sub-procedures, you modularize your program, making program development and
maintenance easier in the long run.
64 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Procedures
Main Procedure
Every MapBasic program has at least one procedure, known as the Main procedure. When you run
a MapBasic application, MapBasic automatically calls that application’s Main procedure.

The following program demonstrates the syntax for explicitly declaring the Main procedure. In this
example, the Main procedure simply issues a Note statement:

Declare Sub Main
Sub Main

Note "Hello from MapBasic!"
End Sub

The Declare Sub statement tells MapBasic that a sub-procedure definition will occur further down.
You must have one Declare Sub statement for each sub-procedure in your program. The Declare
Sub statement must appear before the actual sub-procedure definition. Typically, Declare Sub
statements appear at or near the top of your program.

You may recall from Using the Development Environment that a MapBasic program can be as
simple as a single line. For example, the following statement:

Note "Hello from MapBasic!"

is a complete MapBasic program which you can compile and run. Note that even a simple, one-line
program has a Main procedure. However, in this case, we say that the Main procedure is implied
rather than being explicit.

Calling a Procedure
When you run a compiled application, MapInfo Professional automatically calls the Main procedure
(regardless of whether the Main procedure is implied or explicitly defined). The Main procedure can
then call other sub-procedures through the Call statement.

The following program contains two procedures: a Main procedure, and a procedure called
announce_date.

Declare Sub Main
Declare Sub announce_date

Sub Main
Call announce_date()

End Sub

Sub announce_date
Note "Today’s date is " + Str$(CurDate())

End Sub
MapBasic 11.5 65 User Guide

Procedures
Calling a Procedure That Has Parameters
Like other modern BASIC languages, MapBasic lets you create sub-procedures which take
parameters. If a sub-procedure takes parameters, they are declared within parentheses which follow
the procedure name in the Sub…End Sub statement.

The following example shows a sub-procedure called check_date, which takes one parameter (a
Date value). The sub-procedure checks to see whether the value of the Date parameter is too old
(more than 180 days old). If the Date parameter value is too old, the procedure sets the Date
parameter to the current date.

Declare Sub Main
Declare Sub check_date(last_date As Date)
Sub Main

Dim report_date As Date
report_date = "01/01/94"
Call check_date(report_date)
’ At this point, the variable: report_date
’ may contain the current date (depending on
’ what happened in the check_date procedure).

End Sub
Sub check_date(last_date As Date)

Dim elapsed_days As SmallInt
elapsed_days = CurDate() - last_date
If elapsed_days > 180 Then

last_date = CurDate()
End If

End Sub

Passing Parameters By Reference
By default, each MapBasic procedure parameter is passed by reference. When a parameter is
passed by reference, the following rules apply:

• The Call statement must specify the name of a variable for each by-reference parameter.
• If the called sub-procedure assigns a new value to a by-reference parameter, the new value is

automatically stored in the caller’s variable. In other words, the sub-procedure can use a by-
reference parameter to return a value to the caller.

Thus, in the example above, the Call statement specifies the name of a Date variable report_date:

Call check_date(report_date)

Then, within the check_date procedure, the parameter is known by the name last_date. When the
check_date procedure performs the assignment last_date = CurDate(), MapBasic automatically
updates the Main procedure’s report_date variable.
66 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Procedures
Passing Parameters By Value
Sometimes, it is awkward to pass parameters by reference. For each by-reference parameter, you
must specify the name of a variable in your Call statement. At times, you may find this awkward (for
example, because you may not have a variable of the appropriate type).

Like other modern BASIC languages, MapBasic lets you specify that a procedure parameter will be
passed by value rather than by reference. To specify that a parameter be passed by value, include
the keyword ByVal before the parameter’s name in the Sub…End Sub statement.

When a parameter is passed by value, the following rules apply:

• The Call statement does not need to specify the name of a variable as the parameter. The Call
statement may specify a variable name, a constant value or some other expression.

• If the called sub-procedure assigns a new value to a by-value parameter, the calling procedure is
not affected. In other words, the sub-procedure cannot use a by-value parameter to return a
value to the caller.

The following example shows a procedure (display_date_range) which takes two by-value Date
parameters.

Declare Sub Main
Declare Sub display_date_range(ByVal start_date As Date,

ByVal end_date As Date)

Sub Main
Call display_date_range("1/1", CurDate())

End Sub

Sub display_date_range(ByVal start_date As Date,
ByVal end_date As Date)
Note "The report date range will be: " + Str$(start_date)

+ " through " + Str$(end_date) + "."
End Sub

In this example, both of the parameters to the display_date_range procedure are by-value date
parameters. Thus, when the Main procedure calls display_date_range:

Call display_date_range("1/1", CurDate())

neither of the parameters needs to be a Date variable. The first parameter (“1/1”) is a constant Date
expression, and the second parameter is a date expression derived by calling the CurDate()
function.

Calling Procedures Recursively
The MapBasic language supports recursive function and procedure calls. In other words, a
MapBasic procedure can call itself.

Programs that issue recursive procedure or function calls may encounter memory limitations. Each
time a program makes a recursive call, MapInfo Professional must store data on the stack; if too
many nested recursive calls are made, the program may generate an out-of-memory error. The
amount of memory used up by a recursive call depends on the number of parameters and local
variables associated with the procedure or function.
MapBasic 11.5 67 User Guide

Procedures That Act As System Event Handlers
Procedures That Act As System Event Handlers
Some procedure names have special meaning in MapBasic. For example, as we have seen, the
sub-procedure named Main is special, since MapBasic automatically calls the Main procedure when
you run an application.

In addition to Main, MapBasic has several other special procedure names: EndHandler,
ForegroundTaskSwitchHandler, RemoteMapGenHandler, RemoteMsgHandler,
RemoteQueryHandler(), SelChangedHandler, ToolHandler, WinChangedHandler,
WinClosedHandler, and WinFocusChangedHandler. Each of these reserved procedure names
plays a special role in MapBasic programming. To fully understand how they work, you need to
understand MapBasic’s approach to system events and event-handling.

What Is a System Event?
In a Graphical User Interface environment, the user controls what happens by typing and by using
the mouse. Technically, we say that mouse-clicks and other actions taken by the user generate
system events. There are many different kinds of events; for example, when the user chooses a
menu item, we say that the user has generated a menu-choose event, and when the user closes a
window, we say the user has generated a window-close event.

What Is an Event Handler?
An event-handler is part of a MapBasic program which responds to a system event. Once the user
has generated an event, the application must respond accordingly. For instance, when the user
generates a menu-choose event, the software may need to display a dialog box. Alternately, when
the user generates a window-close event, the software may need to gray out a menu item or hide an
entire menu.

In MapBasic, sub-procedures can act as event-handlers. In other words, you can construct your
program in such a way that MapBasic automatically calls one of your sub-procedures when and if a
certain system event occurs.

To build event-handlers that respond to menu or button-pad choices, see Creating the User
Interface. To build any other types of system event-handlers, you must define a sub-procedure with
a special name. For example, if you want your program to respond automatically whenever the user
closes a window, your application must contain a procedure named WinClosedHandler.

The following table lists all of MapBasic’s special handler names. These special handlers are
discussed in more detail in the MapBasic Reference Guide and online Help.

Special Handler Name Nature of Handler Procedure or Function

EndHandler Called when the application terminates or when the user exits
MapInfo Professional. EndHandler can be used to do clean-up
work (for example, deleting temporary work files).

ForegroundTaskSwitchHandler Called when MapInfo Professional gets the focus (becomes the
active application) or loses the focus.
68 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Procedures That Act As System Event Handlers
Typically, you do not use the Call statement to call the special procedures listed above. If your
program contains one of these specially named procedures, MapBasic calls that procedure
automatically, when and if a certain type of system event occurs. For example, if your program
contains a procedure called WinClosedHandler, MapBasic automatically calls the
WinClosedHandler procedure every time the user closes a window.

All of the special handler procedures are optional. Thus, you should only include a
WinClosedHandler procedure in your application if you want your application to be notified every
time a window is closed. You should only include a SelChangedHandler procedure in your
application if you want your application to be notified each time Selection changes, etc.

The following program defines a special event-handler procedure named ToolHandler. Note that
this program does not contain any Call statements. Once this program is running, MapBasic calls
the ToolHandler procedure automatically, when and if the user selects the MapBasic tool and clicks
on a Mapper, Browser, or Layout window.

Include "mapbasic.def"

RemoteMapGenHandler Called when an OLE Automation client calls the
MapGenHandler method; used primarily in MapInfo ProServer
applications.

RemoteMsgHandler Called when the application is acting as the server in an
interprocess conversation, and the remote client sends an
execute request.

RemoteQueryHandler() Called when the application is acting as the server in an
interprocess conversation, and the remote client sends a peek
request.

SelChangedHandler Called whenever the Selection table changes. Since the
Selection table changes frequently, the SelChangedHandler
procedure should be as brief as possible to avoid slowing
system performance.

ToolHandler Called when the user clicks in a Mapper, Browser, or Layout
window using the MapBasic tool.

WinChangedHandler Called when the user pans, scrolls, or otherwise resets the area
displayed in a Mapper. Since Mapper windows can change
frequently, the WinChangedHandler procedure should be as
brief as possible to avoid slowing system performance.

WinClosedHandler Called when the user closes a Mapper, Browser, Grapher, or
Layout.

WinFocusChangedHandler Called when the window focus changes (i.e., when the user
changes which window is the active window).

Special Handler Name Nature of Handler Procedure or Function
MapBasic 11.5 69 User Guide

Procedures That Act As System Event Handlers
Declare Sub Main
Declare Sub ToolHandler

Sub Main
Note "The ToolHandler demonstration is now in place. "

+ "Select the MapBasic tool (+) and click on a Map "
+ "to see a printout of map coordinates."

End Sub
Sub ToolHandler

If WindowInfo(FrontWindow(), WIN_INFO_TYPE) = WIN_MAPPER Then
Print "X: " + Str$(CommandInfo(CMD_INFO_X))
Print "Y: " + Str$(CommandInfo(CMD_INFO_Y))
Print " "

End If
End Sub

Within a system event handler procedure, you can call the CommandInfo() function to learn more
about the event that made MapBasic call the handler. In the example above, the ToolHandler
procedure calls CommandInfo() to determine the map coordinates where the user clicked.

The following sample SelChangedHandler procedure appears in the sample program, TextBox
(textbox.mb). This procedure automatically disables (grays out) a menu item whenever the user de-
selects all rows, and automatically re-enables the menu item whenever the user selects more rows.

See textbox.mb for more details.

Sub SelChangedHandler
If SelectionInfo(SEL_INFO_NROWS) < 1 Then

Alter Menu Item create_sub Disable
Else

Alter Menu Item create_sub Enable
End If

End Sub

When Is a System Event Handler Called?
By default, a MapBasic application terminates after executing all statements in the Main procedure.
However, if an application contains one or more of the special handler procedures listed above (for
example, if an application contains a ToolHandler procedure), the application remains in memory
after the Main procedure is finished. An application in this state is said to be sleeping. A sleeping
application remains dormant in memory until an appropriate event occurs (for example, until the user
clicks with the MapBasic tool). When the event occurs, MapBasic automatically calls the sleeping
application’s handler procedure.

If any procedure in an application issues the End Program statement, the entire application
is removed from memory, regardless of whether the application contains special handler
procedures. You must avoid using the End Program statement for as long as you want your
program to remain available.
70 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Tips for Handler Procedures
Custom MapBasic menus work in a similar manner. If a MapBasic application adds its own items to
the MapInfo Professional menu structure, the application goes to sleep and waits for the user to
choose one of the custom menu items. For a complete discussion of how to customize MapInfo
Professional’s menus, see Creating the User Interface.

Tips for Handler Procedures

Keep Handler Procedures Short
Bear in mind that some system event-handler procedures are called frequently. For example, if you
create a SelChangedHandler procedure, MapInfo Professional calls the procedure every time the
Selection table changes. In a typical MapInfo Professional session, the Selection table changes
frequently, therefore, you should make event-handler procedures, such as SelChangedHandler, as
short as possible.

Selecting Without Calling SelChangedHandler
If you are using a Select statement, but you do not want the statement to trigger the
SelChangedHandler procedure, include the NoSelect keyword. For example:

Select * From World Into EarthQuery NoSelect

Preventing Infinite Loops
Performing actions within a system handler procedure can sometimes cause an infinite loop. For
example, if you declare a SelChangedHandler procedure, MapInfo Professional calls that
procedure whenever the selection changes. If you issue a Select statement inside of your
SelChangedHandler procedure, the Select statement will cause MapInfo Professional to call the
procedure again in a recursive call. The end result can be an infinite loop, which continues until your
program runs out of memory.

The Set Handler statement can help prevent infinite loops. At the start of your handler procedure,
issue a Set Handler…Off statement to prevent recursive calling of the handler. At the end of the
procedure, issue a Set Handler…On statement to restore the handler.

Sub SelChangedHandler
Set Handler SelChangedHandler Off

’ Issuing a Select statement here
’ will not cause an infinite loop.

Set Handler SelChangedHandler On
End Sub
MapBasic 11.5 71 User Guide

Compiler Instructions
Custom Functions
The MapBasic language supports many different functions. Some are standard BASIC functions (for
example, Asc(), Format$(), Val(), etc.) and some are unique to MapInfo Professional and
MapBasic (for example, Distance() and ObjectGeography()). MapBasic also lets you define
custom functions. Once you have defined a custom function, you can call that function just as you
can call any of MapBasic’s standard functions.

The body of a custom function is defined within a Function…End Function construction, which is
syntactically very similar to a Sub…End Sub construction. The general syntax of a Function…End
Function construct is as follows:

Function function_name(parameters, if any) As data_type
statement list

End Function

The function itself has a data type. This dictates which type of value (for example, Integer, Date,
String) the function returns when called.

Within the body of the Function…End Function construction, the function name acts like a by-
reference parameter. A statement within the Function…End Function construction can assign a
value to the function name; this is the value that MapBasic later returns to the function’s caller.

The example below defines a custom function called money_format(). The money_format()
function takes one numeric parameter (presumably representing a sum of money), and returns a
string (obtained by calling the Format$() function) representing the dollar amount, formatted with
commas.

Declare Sub Main
Declare Function money_format(ByVal num As Float) As String
Sub Main

Dim dollar_amount As String
dollar_amount = money_format(1234567.89)
’ dollar_amount now contains the string: "$1,234,567.89"

End Sub
Function money_format(ByVal num As Float) As String

money_format = Format$(num, "$,#.##;($,#.##)")
End Function

Scope of Functions
A program can define a custom function that has the same name as a standard MapBasic function.
When the program calls the function, the custom function is executed instead of the standard
function.

Compiler Instructions
MapBasic provides two special statements which make it easier to manage large-scale application
development:
72 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Compiler Instructions
• The Define statement lets you define a shorthand identifier which has a definition; the definition
is substituted for the identifier at compile time.

• The Include statement lets you combine two or more separate program files into one compilable
program.

The Define Statement
Through the Define statement, you can define an identifier which acts as a shorthand equivalent for
some specific value.

Use a Define statement whenever you find yourself frequently typing an expression that is difficult to
remember or to type.

For example, if your program deals extensively with objects and object colors, you might find that
you frequently need to type in the value 16711680, a numeric code representing the color red.
Typing such a long number quickly becomes tedious. To spare yourself the tedium of typing in
16711680, you could place the following Define statement in your program:

Define MY_COLOR 16711680

This Define statement creates an easy-to-remember shorthand keyword (MY_COLOR)
representing the number 16711680. After you enter this Define statement, you can simply type
MY_COLOR in every place where you would have typed 16711680. When you compile your
program, MapBasic will assign each occurrence of MY_COLOR a value of 16711680.

There are long-term benefits to using defined keywords. Suppose that you develop a large
application which includes many references to the identifier MY_COLOR. Lets presume that you
then decide that red is not a good color choice, and you want to use green (65280) instead. You
could easily make the switch from red to green simply by changing your Define statement to read:

Define MY_COLOR 65280

The standard MapBasic definitions file, mapbasic.def, contains many Define statements, including
statements for several commonly-used colors (BLACK, WHITE, RED, GREEN, BLUE, CYAN,
MAGENTA, and YELLOW). Use the Include statement to incorporate mapbasic.def into your
program.

The Include Statement
Through the Include statement, you can incorporate two or more separate program files into one
MapBasic application. The Include statement has the following syntax:

Include "filename"

where filename is the name of a text file containing MapBasic statements. When you compile a
program that contains an Include statement, the compiler acts as if the included text is part of the
program being compiled.

Many MapBasic applications use the Include statement to include the standard MapBasic
definitions file, mapbasic.def:

Include "mapbasic.def"
MapBasic 11.5 73 User Guide

Program Organization
mapbasic.def provides Define statements for many standard MapBasic identifiers (TRUE, FALSE,
RED, GREEN, BLUE, TAB_INFO_NAME, etc.).

The filename that you specify can include a directory path. If the filename that you specify does not
include a directory path, the MapBasic compiler looks for the file in the current working directory. If
the file is not found in that directory, the compiler looks in the directory where the MapBasic software
is installed.

As you develop more and more MapBasic programs, you may find that you use certain sections of
code repeatedly. Perhaps you have written a library of one or more custom functions, and you wish
to use those custom functions in every MapBasic program that you write. You could put your custom
functions into a separate text file, perhaps calling the text file functs.mb. You could then incorporate
the function library into another program by issuing the statement:

Include "functs.mb"

Using Include statements also lets you work around the memory limitations of the MapBasic text
editor. As discussed in Using the Development Environment, each MapBasic edit window is
subject to memory limits; once a program file grows too large, you can no longer add statements to
the file using a MapBasic edit window. If this happens, you may want to break your program into two
or more separate program files, then combine the files using the Include statement. Alternately, you
could combine the separate modules using a project file; see Using the Development
Environment for details.

Program Organization
A MapBasic application can include any or all of the different types of statements described in this
chapter. However, the different pieces of a MapBasic program must be arranged in a particular
manner. For example, Global statements may not be placed inside of a Sub…End Sub definition.

The following illustration shows a typical arrangement of the various program components.

Global level statements appear at the top of the program…

Include "mapbasic.def"
other Include statements
Type...End Type statements
Declare Sub statements
Declare Function statements
Define statements
Global statements

…followed by the Main procedure definition…

Sub Main
Dim statements

...
End Sub

…followed by additional sub-procedure definitions…

Sub ...
Dim statements
74 MapBasic 11.5

Chapter 4: MapBasic Fundamentals
Program Organization
...
End Sub

…and custom Function definitions…

Function ...
Dim statements
...

End Function
MapBasic 11.5 75 User Guide

Program Organization
76 MapBasic 11.5

5

Debugging and Trapping
Runtime Errors
Even if your program compiles successfully, it may still contain runtime errors
(errors that occur when you run your program). For example, if your program
creates large database files, the program may generate an error condition if you
run it when there is no free disk space.

This chapter shows you how to deal with runtime errors. This is a two-step
process: first, you debug your program to find out where the error occurs; then,
you modify your program to prevent the error from happening again.

Topics in this section:

Runtime Error Behavior. .78
Debugging a MapBasic Program .78
Error Trapping .80

Runtime Error Behavior
Runtime Error Behavior
There are two main types of programming errors: compilation errors and runtime errors. Compilation
errors, discussed in Using the Development Environment, are syntax errors or other
typographical mistakes that prevent a program from compiling successfully.

Runtime errors are errors that occur when the user actually runs an application. Runtime errors
occur for various reasons; often, the reason has to do with precise conditions that exist at runtime.
For example, the following statement compiles successfully:

Map From stats

However, if there is no table named “stats,” this program generates a runtime error. When a runtime
error occurs, MapInfo Professional halts the MapBasic application, and displays a dialog box
describing the error.

The error message identifies the name of the program file and the line number at which the error
occurred. In the example above, the name of the program is map_it, and the line number containing
the error is 16. This line number identifies which part of your program caused the runtime error.
Once you know the line number, you can return to the MapBasic development environment and use
the Go To Line command (on the Search menu) to locate the statement that caused the problem.

Debugging a MapBasic Program
Some runtime errors are easy to correct. For example, some runtime errors can be caused by
modest typing errors (for example, in the example above, the programmer probably meant to enter
the table name as STATES instead of STATS). Other errors, however, can be harder to locate. To
help you detect and correct bugs in your program, MapBasic provides debugging tools (the Stop
and Continue statements) which work in conjunction with MapInfo Professional’s MapBasic
Window.

Summary of the Debugging Process
If part of your program is not working correctly, you can use the following procedure to identify where
the problem occurs:

1. Within the MapBasic development environment, edit your program, and place a Stop statement
just before the part of your program that seems to be failing.

2. Recompile and run your program.
When your program reaches the Stop statement, MapBasic temporarily suspends execution of
your program and displays a debugging message in the MapBasic window (for example,
“Breakpoint at textbox.mb line 23").
78 MapBasic 11.5

Chapter 5: Debugging and Trapping Runtime Errors
Debugging a MapBasic Program
3. Within the MapBasic window:
Type ? Dim to see a list of all local variables that are in use.
Type ? Global to see a list of all global variables that are in use.
Type ? variable_name to see the current contents of a variable.
Type ? variable_name = new_value to change the contents of that variable.

4. When you are finished examining and modifying the contents of variables, type Continue in the
MapBasic window to resume program execution. Alternately, you can choose the Continue
Program command from MapInfo Professional’s File menu. Note that while a program is
suspended, the File menu contains a Continue Program command instead of a Run Program
command.

Limitations of the Stop Statement
In the following cases, MapBasic does not allow you to suspend a program through the Stop
statement:

• You may not use a Stop statement within a custom Function…End Function construct.
• You may not use a Stop statement within a dialog box control handler, because while the

handler is active, the dialog box is still on the screen.
• You may not use a Stop statement within a ProgressBar handler.
• You may not debug one program while another program is running.
• Through the Run Application statement, one MapBasic application can “spawn” another

application. However, you may not use the Stop statement to suspend execution of the spawned
application.
Even without using the Run Application statement, it is possible to run separate MapBasic
programs at one time. For example, if you run the TextBox application, TextBox creates its own
custom menu, then remains sleeping until you choose an item from that menu. After loading
TextBox, you can run other MapBasic applications. However, you may not use the Stop
statement while you have multiple applications running simultaneously.
MapBasic 11.5 79 User Guide

Error Trapping
Other Debugging Tools
MapBasic’s Note and Print statements are also helpful when debugging a program. For example, if
you wish to observe the contents of a variable as it changes, simply add a Print statement to your
program:

Print "Current value of counter: " + counter

to print a message to MapBasic’s Message window. The sample program AppInfo.mbx allows you to
examine the values of global variables in any MapBasic applications that are running.

Error Trapping
A well-designed program anticipates the possibility of runtime errors and includes precautions
whenever possible. Intercepting and dealing with runtime errors is known as error trapping. In
MapBasic, error trapping involves using the OnError statement.

Veteran BASIC programmers take note: in MapBasic, OnError is a single keyword.

At any point during execution, error trapping is either enabled or disabled. By default, all procedures
and functions start with error trapping disabled. The OnError statement enables error trapping.

Typically, OnError specifies a label that must appear at another location in the same procedure or
function. The statements following the label are known as the error-trapping routine. If an error
occurs while an error-trapping routine has been enabled, MapBasic jumps to the specified label and
executes the error-trapping routine instead of halting the application.

Within the error-trapping routine, you can call the Err() function to obtain an Integer code indicating
which error occurred. Similarly, Error$() returns a string describing the error message. For a
complete listing of potential MapBasic error codes and their descriptions, see the text file errors.doc
which is included with MapBasic. Each error-trapping routine ends with a Resume statement. The
Resume statement tells MapBasic which line to go to once the error-trapping routine is finished.

For more about error trapping, see OnError, Resume, Err() and Error$() in the MapBasic
Reference Guide.

MapBasic can only handle one error at a time. If you enable error-trapping and then an error
occurs, MapBasic jumps to your error-handling routine. If another error occurs within the
error-handling routine (i.e., before the Resume statement), your MapBasic application halts.

Example of Error Trapping
The program below opens a table called orders and displays it in Map and Browse windows. An
error-trapping routine called bad_open handles any errors that relate to the Open Table statement.
A second error-trapping routine called not_mappable handles errors relating to the Map statement.

Sub orders_setup
’ At the start, error trapping is disabled
OnError Goto bad_open
’ At this point, error trapping is enabled, with
80 MapBasic 11.5

Chapter 5: Debugging and Trapping Runtime Errors
Error Trapping
’ bad_open as the error-handling routine.
Open Table "orders.tab"
OnError Goto not_mappable

’ At this point, error trapping is enabled, with
’ not_mappable as the new error-handling routine.
Map From orders
OnError Goto 0
Browse * From orders

last_exit:
Exit Sub
’ The Exit Sub prevents the program from
’ unintentionally executing the error handlers.

bad_open:
’ This routine called if Open statement had an error.
Note "Couldn’t open the table Orders... Halting."
Resume last_exit

not_mappable:
’ This routine called if the Map statement had an error
Note "No map data; data will only appear in Browser."
Resume Next

End Sub

The statement OnError Goto bad_open enables error trapping. If an error occurs because of the
Open Table statement, MapBasic jumps to the error-trapping routine at the label bad_open. The
error-trapping routine displays an error message, then issues a Resume statement to resume
execution at the label last_exit.

If the Open Table statement is successful, the program then issues the statement OnError Goto
not_mappable. This line resets the error trapping, so that if the Map statement generates an error,
MapBasic jumps to not_mappable. The not_mappable error-trapping routine displays a message
telling the user why no Mapper window was presented, and then executes a Resume Next
statement. The Resume Next statement tells MapBasic to skip the line that generated the error, and
resume with the following statement.

The OnError Goto 0 statement disables error trapping. Thus, if an error occurs as a result of the
Browse statement, that error is not trapped, and program execution halts.
MapBasic 11.5 81 User Guide

Error Trapping
82 MapBasic 11.5

6

Creating the User
Interface
The user interface is an important part of every application. MapBasic provides
you with all the tools you need to customize MapInfo Professional’s user
interface.

Topics in this section:

Introduction to MapBasic User Interface Principles84
Event-Driven Programming. .84
Menus .86
Standard Dialog Boxes .96
Custom Dialog Boxes .98
Windows .106
ButtonPads (Toolbars) .113
Cursors .121
Integrating Your Application Into MapInfo Professional 122
Performance Tips for the User Interface 124

Introduction to MapBasic User Interface Principles
Introduction to MapBasic User Interface Principles
By writing a MapBasic program, you can create a custom user interface for MapInfo Professional. A
MapBasic program can control the following elements of the user interface:

• Menus: MapBasic programs can add custom menu items to existing menus, remove menus
from the menu bar, and create entirely new menus.

• Dialog boxes: MapBasic programs can display custom dialog boxes, tailored to fit the users’
needs.

• Windows: MapBasic programs can display standard types of MapInfo Professional windows (for
example, Map and Browse windows) and customize the contents of those windows. MapBasic
can also display messages in a special window (the Message window) and on the MapInfo
Professional status bar.

• ButtonPads (also known as toolbars): MapBasic programs can add custom buttons to existing
ButtonPads, or create entirely new ButtonPads. MapInfo Professional includes a special
ButtonPad, Tools, to provide a place where MapBasic utilities can add custom buttons. For
example, the ScaleBar application adds its custom button to the Tools pad.

The sample application, OverView, demonstrates many aspects of a custom interface created in
MapBasic. When the user runs OverView, MapBasic adds custom items to the Tools menu. If the
user chooses the custom Setup Overview menu item, MapBasic displays a custom dialog box. If the
user chooses a table from this dialog box, MapBasic opens a new Map window to display the table.

Event-Driven Programming
MapBasic follows a programming model known as event-driven programming. To understand how a
MapBasic program can create a custom user interface, you must first understand the basic
principles of event-driven programming.

What Is an Event?
In a Graphical User Interface environment, the user controls what happens by typing and by using
the mouse. Technically, we say that mouse-clicks and other actions taken by the user generate
events. There are many different kinds of events; for example, when the user chooses a menu item,
we say that the user has generated a menu-choose event, and when the user closes a window, we
say the user has generated a window-close event.

What Happens When The User Generates A Menu Event?
When the user generates an event, the software must respond accordingly. Thus, when the user
chooses a menu item, the software may need to display a dialog box or, depending on which menu
item the user chooses, the software may need to take some other action, such as opening or closing
a table or a window. In general, when the user generates an event, we say that the software handles
the event.
84 MapBasic 11.5

Chapter 6: Creating the User Interface
Event-Driven Programming
If a MapBasic application creates a custom menu, and the user chooses an item from that menu, the
MapBasic application handles the menu-choose event. Typically, the MapBasic application handles
the event by calling a procedure. In this situation, we say that the procedure acts as an event-
handler, or handler for short.

Thus, creating custom menu items is typically a two-step process:

1. Customize the MapInfo Professional menu structure, using statements such as Create Menu or
Alter Menu.

2. Specify a handler for each custom menu item. A handler can be a sub-procedure that appears
elsewhere in your program. Set up each handler procedure to perform whatever tasks are
appropriate for the corresponding menu item(s). Alternately, instead of specifying a procedure as
the menu item’s handler, you can specify that the menu item call a standard MapInfo
Professional command. Thus, you could create a custom menu item that invokes the Create
Thematic Map command (from MapInfo Professional’s Map menu).

As noted in Using the Development Environment, the Call statement lets you call a sub-
procedure. However, when a sub-procedure acts as an event-handler, you do not issue any Call
statements. Instead of issuing Call statements, you include a Calling clause within the Create
Menu statement.

For example, the TextBox application issues the following Create Menu statement:

Create Menu "TextBox" As
"&Create Text Boxes..." Calling create_sub,
"Close TextBox" Calling Bye,
"About TextBox..." Calling About

This statement creates a custom menu with several menu items, each of which contains a Calling
clause (for example, Calling create_sub). Each Calling clause identifies the name of a
procedure that appears elsewhere in the TextBox.mb program. Thus, create_sub, Bye, and About
are all sub-procedure names.

When and if the user chooses the Create Text Boxes item from the TextBox menu, MapBasic
automatically calls the create_sub procedure. Thus, the create_sub procedure acts as the handler
for that menu item.

How Does a Program Handle ButtonPad Events?
Each button on a custom MapBasic ButtonPad has a handler procedure. Like the Create Menu
statement, the Create ButtonPad statement contains a Calling clause which lets you designate a
handler procedure. When the user works with a custom button, MapBasic calls the sub-procedure
that you named in the Create ButtonPad statement.

MapBasic lets you create different types of custom buttons. With custom PushButtons, MapBasic
calls the button’s handler the moment the user chooses the button. With custom ToolButtons,
MapBasic only calls the button’s handler if the user chooses the tool and then clicks on a window.
For more information, see ButtonPads (Toolbars) on page 113.
MapBasic 11.5 85 User Guide

Menus
How Does a Program Handle Dialog Box Events?
Custom MapBasic dialog boxes can call handler procedures. Thus, if you create a custom dialog
box that contains a check-box, MapBasic can call a handler procedure each time the user checks or
clears the check-box. However, depending on your application, you may not need to create handlers
for your dialog boxes. For a discussion of custom dialog boxes, see Custom Dialog Boxes on
page 98.

Menus
Menus are an essential element of the graphical user interface. Accordingly, the MapBasic language
lets you control every aspect of MapInfo Professional’s menu structure. With a few lines of code, you
can customize any or all of MapInfo Professional’s menus or menu items.

Menu Fundamentals
MapInfo Professional’s menu structure consists of the following elements:

The menu bar is the horizontal bar across the top of the MapInfo Professional work area. The default
MapInfo Professional menu bar contains words such as File, Edit, Objects, Query, etc.

A menu is a vertical list of commands that drops down if you click on the menu bar. For example,
most applications include a File menu and an Edit menu.

A menu item is an individual command that appears on a menu. For example, the File menu
typically contains menu items such as Open, Close, Save, and Print. Menu items are sometimes
referred to as commands (for example, the File > Save command.

1 Menu 2 Menu Bar 3 Menu Items

The concepts of menu, menu bar, and menu item are interrelated. Each menu is a set of menu
items. For example, the File menu contains items such as Open, Close, Save, etc. The menu bar is
a set of menus.

1

2

3

86 MapBasic 11.5

Chapter 6: Creating the User Interface
Menus
When the user chooses a menu item, some sort of action is initiated. Different menu items invoke
different types of actions; some menu items cause dialog boxes to be displayed, while other menu
items produce an immediate effect.

The action associated with a menu item is referred to as the menu item’s handler. A menu item
handler can either be a standard MapInfo Professional command code or a custom MapBasic sub-
procedure name. In other words, when the user chooses a menu item, MapInfo Professional
“handles” the menu-choose event, either by running a standard command code or by calling a sub-
procedure from your application.

Adding New Items To A Menu
To add one or more custom items to an existing menu, use the Alter Menu statement.

For example, the following statement adds two custom menu items to the Query menu (one item
called Annual Report, and another item called Quarterly Report):

Alter Menu "Query" Add
"Annual Report" Calling report_sub,
"Quarterly Report" Calling report_sub_q

For each of the custom menu items, the Alter Menu statement specifies a Calling clause. This
clause specifies what should happen when and if the user chooses the menu item. If the user
chooses the Annual Report item, MapInfo Professional calls the sub-procedure report_sub.

If the user chooses the Quarterly Report item, MapInfo Professional calls the sub-procedure
report_sub_q. These sub-procedures (report_sub and report_sub_q) must appear elsewhere within
the same MapBasic application.

You also can create custom menu items that invoke standard MapInfo Professional commands,
rather than calling MapBasic sub-procedures. The definitions file menu.def contains a list of
definitions of menu codes (for example, M_FILE_NEW and M_EDIT_UNDO). Each definition in that
file corresponds to one of the standard MapInfo Professional menu commands (for example,
M_EDIT_UNDO corresponds to the Edit menu’s Undo command). If a menu item’s Calling clause
specifies one of the menu codes from menu.def, and the user chooses that menu item, MapInfo
Professional invokes the appropriate MapInfo Professional command.

For example, the following statement defines a “Color Coded Maps” menu item. If the user chooses
Color Coded Maps, MapInfo Professional runs the command code M_MAP_THEMATIC. In other
words, if the user chooses the menu item, MapInfo Professional displays the Create Thematic Map
dialog box, just as if the user had chosen the Map > Create Thematic Map command.

Alter Menu "Query" Add
"Color Coded Maps" Calling M_MAP_THEMATIC

Removing Items From A Menu
An application can remove individual menu items. The following statement removes the Delete
Table item from MapInfo Professional’s Table > Maintenance menu. Note that the identifier
M_TABLE_DELETE is a code defined in the menu definitions file, menu.def.

Alter Menu "Maintenance" Remove M_TABLE_DELETE
MapBasic 11.5 87 User Guide

Menus
If you want to remove several items from a menu, there are two techniques you can use: you can
issue an Alter Menu…Remove statement which lists all the items you wish to remove; or you can
issue a Create Menu…statement which redefines the menu entirely, including only the items you
want.

For example, the following statement creates a simplified version of the Map menu that includes only
three items (Layer Control, Previous View, and Options):

Create Menu "Map" As
"Layer Control" Calling M_MAP_LAYER_CONTROL,
"Previous View" Calling M_MAP_PREVIOUS,
"Options" Calling M_MAP_OPTIONS

Creating A New Menu
To create an all-new menu, use the Create Menu statement. For example, the sample application,
TextBox, issues the following Create Menu statement:

Create Menu "TextBox" As
"&Create Text Boxes..." Calling create_sub,
"(-",
"&About TextBox..." Calling About,
"E&xit TextBox" Calling Bye

The Create Menu statement creates a new “TextBox” menu. However, the act of creating a menu
does not cause the menu to appear automatically. To make the new menu become visible, you must
take an additional step.

You could make the TextBox menu visible by adding it to the menu bar, using the Alter Menu Bar
statement:

Alter Menu Bar Add "TextBox"

The Alter Menu Bar Add statement adds the menu to the right end of the menu bar. The menu
produced would look like this:

In practice, adding menus onto the menu bar is sometimes problematic. The amount of space on the
menu bar is limited, and every time you add a menu to the menu bar, you fill some of the remaining
space. Therefore, for the sake of conserving space on the menu bar, the TextBox application uses a
different technique for displaying its menu: instead of adding its menu directly onto the menu bar, the
TextBox application uses an Alter Menu statement to add its menu as a hierarchical sub-menu,
located on the Tools menu.

Alter Menu "Tools" Add
"(-",
"TextBox" As "TextBox"
88 MapBasic 11.5

Chapter 6: Creating the User Interface
Menus
As a result of this statement, the TextBox menu appears as a hierarchical menu located on the Tools
menu. The resulting Tools menu looks like this:

Sample programs that are provided with MapInfo Professional, such as ScaleBar and OverView,
follow the same convention (placing their menu items on hierarchical menus located off of the Tools
menu). Thus, if you run the TextBox application, the ScaleBar application, and the OverView
application, all three applications add their commands to the Tools menu.

If each of the sample programs (ScaleBar, etc.) added a menu directly onto the menu bar, the menu
bar would quickly become over-crowded. Stacking hierarchical menus onto the Tools menu (or any
other menu) is one way of conserving space on the menu bar. Note, however, that some users find
hierarchical menus significantly harder to use.

How you design and organize your menus will depend on the nature of your application. Depending
on your application, you may need to add one, two, or even several menus to the menu bar.

Regardless of whether you attach your menus to the menu bar or to other menus, MapInfo
Professional is limited to 96 menu definitions. In other words, there can never be more than 96
menus defined at one time, including MapInfo Professional’s standard menus. This limitation applies
even when you are not displaying all of the menus.

Altering A Menu Item
The MapBasic language lets you perform the following operations on individual menu items:

• You can disable (gray out) a menu item, so that the user cannot choose that menu item.
• You can enable a menu item that was formerly disabled.
• You can check a menu item (i.e., add a check-mark to the menu item); however, a menu item

must be defined as “checkable” when it is created. To define a menu item as checkable, insert
an exclamation point as the first character of the menu item name. For more information, see
Create Menu in the MapBasic Reference Guide.

• You can un-select a menu item (i.e., remove the check-mark)
• You can rename the menu item, so that the text that appears on the menu changes.

To alter a menu item, use the Alter Menu Item statement. The Alter Menu Item statement includes
several optional clauses (Enable, Disable, Check, UnCheck, etc.); use whichever clauses apply to
the change you want to make.

The sample program OverView demonstrates the process of creating, then altering, a custom menu.
The OverView application creates the following custom menu:

Create Menu "OverView" As
"&Setup OverView" Calling OverView,
MapBasic 11.5 89 User Guide

Menus
"(Suspend Tracking" Calling MenuToggler,
"(Pick Frame Style" Calling PickFrame,
"(-",
"Close Overview" Calling Bye,
"(-",
"About Overview..." Calling About

The Pick Frame Style menu item is initially disabled. (Whenever the name of a menu item begins
with the “(” character, that menu item is automatically disabled when the menu first appears.)

When and if the user sets up an overview window, the OverView application enables the Pick
Frame Style menu item, using the following statement:

Alter Menu Item PickFrame Enable

If the user closes the overview window, the application once again disables the Pick Frame menu
item, by issuing the following statement:

Alter Menu Item PickFrame Disable

PickFrame is the name of a sub-procedure in overview.mb. Note that PickFrame appears in both the
Create Menu statement (in the Calling clause) and in the Alter Menu Item statements. When you
issue an Alter Menu Item statement, you must specify which menu item you want to alter. If you
specify the name of a procedure (for example, PickFrame), MapInfo Professional modifies whatever
menu item calls that procedure.

Similarly, to enable the Suspend Tracking menu item, issue the following statement:

Alter Menu Item MenuToggler Enable

You also can use Alter Menu Item to change the name of a menu item. For example, the OverView
application has a menu item that is initially called Suspend Tracking. If the user chooses Suspend
Tracking, the application changes the menu item’s name to Resume Tracking by issuing the
following statement:

Alter Menu Item MenuToggler Text "Resume Tracking"

Note that MapInfo Professional enables and disables its own standard menu items automatically,
depending on the circumstances. For example, the Window > New Map Window command is only
enabled when and if a mappable table is open. Because MapInfo Professional automatically alters
its own standard menu items, a MapBasic application should not attempt to enable or disable those
menu items.

Re-Defining The Menu Bar
To remove an entire menu from the menu bar, use the Alter Menu Bar statement. For example, the
following statement causes the Query menu to disappear:

Alter Menu Bar Remove "Query"

You also can use Alter Menu Bar to add menus to the menu bar. For example, the following
statement adds both the Map menu and the Browse menu to the menu bar. (By default, those two
menus never appear on the menu bar at the same time. The Map menu ordinarily appears only
when a Map is the active window, and the Browse menu ordinarily appears only when a Browser
window is active.)
90 MapBasic 11.5

Chapter 6: Creating the User Interface
Menus
Alter Menu Bar Add "Map", "Browse"

The Alter Menu Bar Add statement always adds menus to the right end of the menu bar. One minor
disadvantage of this behavior is the fact that menus can end up located to the right of the Help
menu. Most software packages arrange the menu bar so that the last two menu names are Window
and Help. Therefore, you may want to insert your custom menu to the left of the Window menu. The
following statements show how to insert a menu to the left of the Window menu:

Alter Menu Bar Remove ID 6, ID 7
Alter Menu Bar Add "Tools", ID 6, ID 7

The first statement removes the Window menu (ID 6) and Help menu (ID 7) from the menu bar. The
second statement adds the Tools menu, the Window menu, and the Help menu to the menu bar.
The end result is that the Tools menu is placed to the left of the Window menu.

For complete control over the menu order, use the Create Menu Bar statement. For example, this
statement re-defines the menu bar to include the File, Edit, Map, Query, and Help menus (in that
order):

Create Menu Bar As "File", "Edit", "Map", "Query", "Help"

For a list of MapInfo Professional’s standard menu names (“File”, “Query” etc.) see Alter Menu in
the MapBasic Reference Guide or online Help. To restore MapInfo Professional’s standard menu
definitions, issue a Create Menu Bar As Default statement.

Specifying Language-Independent Menu References
Most of the preceding examples refer to menus by their names (for example, “File”). There is an
alternate syntax for referring to MapInfo Professional’s standard menus: you can identify standard
menus by ID numbers. For example, in any menu-related statement where you might refer to the
File menu as “File”, you could instead refer to that menu as ID 1. Thus, the following statement
removes the Query menu (which has ID number 3) from the menu bar:

Alter Menu Bar Remove ID 3

If your application will be used in more than one country, you may want to identify menus by their ID
numbers, rather than by their names. When the MapInfo Professional software is localized for non-
English speaking countries, the names of menus are changed. If your application tries to alter the
“File” menu, and you run your application on a non-English version of MapInfo Professional, your
application may generate an error (because in a non-English version of MapInfo Professional, “File”
may not be the name of the menu). For a listing of the ID numbers that correspond to MapInfo
Professional’s standard menus, see Alter Menu in the MapBasic Reference Guide or online Help.

Customizing MapInfo Professional’s Shortcut Menus
MapInfo Professional provides shortcut menus. These menus appear if the user clicks the right
mouse button. To manipulate shortcut menus, use the same statements you would use to
manipulate conventional menus: Alter Menu, Alter Menu Item, and Create Menu.
MapBasic 11.5 91 User Guide

Menus
Each shortcut menu has a unique name and ID number. For example, the shortcut menu that
appears when you right-click a Map window is called “MapperShortcut” and has an ID of 17. For a
listing of the names and ID numbers of the shortcut menus, see Alter Menu in the MapBasic
Reference Guide or online Help.

To destroy a shortcut menu, use the Create Menu statement to re-define the menu, and specify the
control code “(-” as the new menu definition. For example:

Create Menu "MapperShortcut" ID 17 As "(-"

Assigning One Handler Procedure To Multiple Menu Items
The Create Menu and Alter Menu statements provide an optional ID clause, which lets you assign
a unique ID number to each custom menu item you create. Menu item IDs are optional. However, if
you intend to have two or more menu items calling the same handler procedure, you will probably
want to assign a unique ID number to each of your custom menu items.

In situations where two or more menu items call the same handler procedure, the handler procedure
generally calls CommandInfo() to determine which item the user chose. For example, the following
statement creates two custom menu items that call the same handler:

Alter Menu "Query" Add
"Annual Report" ID 201 Calling report_sub,
"Quarterly Report" ID 202 Calling report_sub

Both menu items call the procedure report_sub. Because each menu item has a unique ID, the
handler procedure can call CommandInfo() to detect which menu item the user chose, and act
accordingly:

Sub report_sub
If CommandInfo(CMD_INFO_MENUITEM) = 201 Then

’
’ ... then the user chose Annual Report...
’

ElseIf CommandInfo(CMD_INFO_MENUITEM) = 202 Then
’
’ ... then the user chose Quarterly Report...
’

End If
End Sub

Menu item IDs also give you more control when it comes to altering menu items. If an Alter Menu
Item statement identifies a menu item by the name of its handler procedure, MapBasic modifies all
menu items that call the same procedure. Thus, the following statement disables both of the custom
menu items defined above (which may not be the desired effect):

Alter Menu Item report_sub Disable

Depending on the nature of your application, you may want to modify only one of the menu items.
The following statement disables only the Annual Report menu item, but has no effect on any other
menu items:

Alter Menu Item ID 201 Disable

Menu item ID numbers can be any positive Integer.
92 MapBasic 11.5

Chapter 6: Creating the User Interface
Menus
Simulating Menu Selections
To activate a MapInfo Professional command as if the user had chosen that menu item, use the Run
Menu Command statement. For example, the following statement displays MapInfo Professional’s
Open Table dialog box, as if the user had chosen File > Open Table:

Run Menu Command M_FILE_OPEN

The code M_FILE_OPEN is defined in menu.def.

Defining Shortcut Keys And Hot Keys
Shortcut keys are keystroke combinations that let the user access menus and menu items directly
from the keyboard, without using the mouse. Typically, a shortcut key appears as an underlined
letter in the name of the menu or menu item when the Alt key is pressed. For example, in Windows,
the shortcut keystroke to activate the MapInfo Professional File menu is <Alt-F>, as indicated by the
underlined letter, F after the Alt key is pressed. To assign a shortcut key to a menu item, place an
ampersand (&) directly before the character that you want to define as the shortcut key.

The following program fragment shows how a MapBasic for Windows program defines the C key (in
Create Text Boxes) as a shortcut key.

Create Menu "TextBox" As
"&Create Text Boxes..." Calling create_sub,
...

Hot keys are keystroke combinations that let the user execute menu commands without activating
the menu. Unlike shortcut keys that let you traverse through the menu structure using the keyboard,
hot keys let you avoid the menu completely. The following program fragment adds the hot key
combination Ctrl-Z to a custom menu item:

Alter Menu "Query" Add
"New Report" + Chr$(9) + "CTRL-Z/W^%122" Calling new_sub

The instruction + Chr$(9) tells MapBasic to insert a tab character. The tab character is used for
formatting, so that all of the menu’s hotkey descriptions appear aligned.

The text CTRL-Z appears on the menu, so that the user can see the menu item has a hot key.

The instruction /w^%122 defines the hot key as Ctrl-Z. The code /w^%122 is a hot key code
recognized by MapInfo Professional: /w specifies that the code is for MapInfo Professional for
Windows; the caret (^) specifies that the user should hold down the Ctrl key; and %122 specifies the
letter “z” (122 is the ASCII character code for ‘z’).

Alter Menu "Query" Add
"New Report /Mz" Calling new_sub

The instruction /Mz defines the hot key as Command-Z.

For a listing of codes that control menu hot keys, see Create Menu in the MapBasic Reference
Guide or online Help.
MapBasic 11.5 93 User Guide

Menus
Controlling Menus Through the MapInfo Professional Menus File
The default menu structure of MapInfo Professional is controlled by the MapInfo Professional menus
file. If you want to customize MapInfo Professional’s menu structure, you can do so by altering the
menus file.

With MapInfo Professional, the menus file is called MAPINFOW.MNU.

Since the menus file is a text file, you can view it in any text editor. If you examine the menus file,
you will see that it bears a strong resemblance to a MapBasic program. If you change the menu
definitions in the menus file, the menus will look different the next time you run MapInfo
Professional. In other words, altering the menus file gives you a way of customizing the menu
structure without using a compiled MapBasic application.

CAUTION: Before you make any changes to the menus file, make a backup of the file. If the
menus file is corrupted or destroyed, you will not be able to run MapInfo
Professional (unless you can restore the menus file from a backup). If you
corrupt the menus file, and you cannot restore the file from a backup, you will
need to re-install MapInfo Professional.

The menus file contains several Create Menu statements. These statements define MapInfo
Professional’s standard menu definitions (File, Edit, etc.). If you wish to remove one or more menu
items from a menu, you can do so by removing appropriate lines from the appropriate Create Menu
statement.

For example, MapInfo Professional’s Table > Maintenance menu usually contains a Delete Table
command, as shown below.

If you examine the menus file, you will see that the Maintenance menu is defined through a Create
Menu statement that looks like this:

Create Menu "&Maintenance" As
"&Table Structure..."
HelpMsg "Modify the table structure."
calling 404,
"&Delete Table..."
HelpMsg "Delete a table and its component files. "
calling 409,
"&Rename Table..."
HelpMsg "Rename a table and its component files."
calling 410,
"&Pack Table..."
HelpMsg "Compress tables to conserve space

and eliminate deleted records."
calling 403,
. . .
94 MapBasic 11.5

Chapter 6: Creating the User Interface
Menus
Because the Delete Table command is potentially dangerous, you might want to re-define the
Maintenance menu to eliminate Delete Table. To eliminate the Delete Table command from the
menu, remove the appropriate lines ("&Delete Table…" through to calling 409) from the
menus file. After you make this change, the Create Menu statement will look like this:

Create Menu "&Maintenance" As
"&Table Structure..."
HelpMsg "Modify the table structure."
calling 404,
"&Rename Table..."
HelpMsg "Rename a table and its component files."
calling 410,
"&Pack Table..."
HelpMsg "Compress tables to conserve space

and eliminate deleted records."
calling 403,
. . .

The next time you run MapInfo Professional, the Table > Maintenance menu will appear without a
Delete Table item.

Similarly, if you wish to remove entire menus from the MapInfo Professional menu bar, you can do
so by editing the Create Menu Bar statement that appears in the menus file.

If MapInfo Professional is installed on a network, and you modify the menus file in the directory
where MapInfo Professional is installed, the changes will apply to all MapInfo Professional users on
the network. In some circumstances, you may want to create different menu structures for different
network users. For example, you may want to eliminate the Delete Table command from the menu
that appears for most of your users, but you may want that command to remain available to your
network system administrator.

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory. For Windows users, the home directory is defined as the user’s
private Windows directory (i.e., the directory where WIN.INI resides).

To assign an individual user a customized menu structure, place a customized version of the menus
file in that user’s “home” directory/folder. The menus file can be placed directly in the System
directory, or in the Preferences directory within the System directory.

When a user runs MapInfo Professional, it checks to see if a copy of the menus file exists in the
user’s home directory. If a copy of the menus file is present in the user’s home directory, MapInfo
Professional loads that set of menus. If there is no menus file in the user’s home directory, MapInfo
Professional loads the menus file from the directory where it is installed.
MapBasic 11.5 95 User Guide

Standard Dialog Boxes
Thus, if you want different users to see two different versions of the menu structure, create two
different versions of the menus file. Place the version that applies to most of your users in the
directory where MapInfo Professional is installed. Place the version that applies only to individual
users in the home directories of the individual users.

Standard Dialog Boxes
Dialog boxes are an essential element of the user interface. MapBasic provides several different
statements and functions that let you create dialog boxes for your application.

Displaying a Message
Use the Note statement to display a simple dialog box with a message and an OK button.

Asking a Yes-or-No Question
Use the Ask() function to display a dialog box with a prompt and two buttons. The two buttons
usually say OK and Cancel, but you can customize them to suit your application. If the user chooses
the OK button, the function returns a TRUE value, otherwise, the function returns FALSE.

Selecting a File
Call the FileOpenDlg() function to display a standard File Open dialog box. If the user chooses a
file, the function returns the name of the chosen file. If the user cancels out of the dialog box, the
function returns an empty string.
96 MapBasic 11.5

Chapter 6: Creating the User Interface
Standard Dialog Boxes
The FileOpenDlg() function produces a dialog box that looks like this:

The FileSaveAsDlg() function displays a standard File Save As dialog box, and returns the file
name entered by the user.

Indicating the Percent Complete
Use the ProgressBar statement to display a standard percent-complete dialog box, containing a
progress bar and a Cancel button.

Displaying One Row From a Table
MapInfo Professional does not provide a standard dialog box that displays one row from a table.
However, you can use MapInfo Professional’s Info window to display a row. For instructions on
managing the Info window, see Customizing the Info Window on page 112.

For more information about the statements and functions listed above, see the MapBasic Reference
Guide. If none of the preceding statements meets your needs, use the Dialog statement to create a
custom dialog box, as described below.
MapBasic 11.5 97 User Guide

Custom Dialog Boxes
Custom Dialog Boxes
The Dialog statement lets you create custom dialog boxes. When you issue a Dialog statement,
MapInfo Professional displays the dialog box and lets the user interact it. When the user dismisses
the dialog box (for example, by clicking the OK or Cancel button), MapInfo Professional executes
any statements that follow the Dialog statement. After the Dialog statement, you can call the
CommandInfo() function to tell whether the user chose OK or Cancel.

Everything that can appear on a dialog box is known as a control. For example, every OK button is a
control, and every Cancel button is also a control. To add controls to a dialog box, include Control
clauses within the Dialog statement. For example, the following statement creates a dialog box with
four controls: a label (known as a StaticText control); a box where the user can type (known as an
EditText control); an OK push-button (known as OKButton control) and a Cancel push-button
(CancelButton control).

Dim s_searchfor As String

Dialog
Title "Search"
Control StaticText

Title "Enter string to find:"
Control EditText

Into s_searchfor
Control OKButton
Control CancelButton

If CommandInfo(CMD_INFO_DLG_OK) Then
’
’ ... then the user clicked OK -- in which case,
’ the String variable: s_searchfor will contain
’ the value entered by the user.
’

End If

This Dialog statement produces the following dialog box:

Sizes and Positions of Controls
If you want to change the size of a dialog box control, you can include the optional Width and
Height clauses within the Control clause. If you want to change the position of a dialog box control,
you can include the optional Position clause.

For example, you might not like the default placement of the buttons in the dialog box shown above.
To control the button placement, you could add Position clauses, as shown below:

Dialog
Title "Search"
Control StaticText
98 MapBasic 11.5

Chapter 6: Creating the User Interface
Custom Dialog Boxes
Title "Enter string to find:"
Control EditText

Into s_searchfor
Control OKButton

Title "Search"
Position 30, 30

Control CancelButton
Position 90, 30

Because two of the Control clauses include Position clauses, the dialog box’s appearance
changes:

Positions and sizes are stated in terms of dialog box units, where each dialog box unit represents
one quarter of a character’s width or one eighth of a character’s height. The upper-left corner of the
dialog box has the position 0, 0. The following Position clause specifies a position in the dialog box
five characters from the left edge of the dialog box, and two characters from the top edge of the
dialog box:

Position 20, 16

A horizontal position of 20 specifies a position five characters to the right, since each dialog box unit
represents one fourth of the width of a character. A vertical position of 16 specifies a position two
characters down, since each dialog box unit spans one eighth of the height of a character.

You can include a Position clause for every control in the dialog box. You also can specify Width
and Height clauses to customize a control’s size.

Control Types
The previous examples contained four types of controls (StaticText, EditText, OKButton, and
CancelButton). The following illustration shows all of MapBasic’s dialog box control types.
MapBasic 11.5 99 User Guide

Custom Dialog Boxes
1 StaticText box 2 GroupBox 3 RadioGroup 4 ListBox 5 PopupMenu 6 Button
7 OKButton 8 EditText box 9 Picker (SymbolPicker) 10 MultiListBox 11 Checkbox
12 CancelButton

StaticText

A StaticText control is a non-interactive control that lets you include labels in the dialog box. For
example:

Control StaticText
Title "Enter map title:"
Position 5, 10

EditText

An EditText control is a boxed area where the user can type. For example:

Control EditText
Value "New Franchises, FY 95"
Into s_title
ID 1
Position 65, 8 Width 90

GroupBox

A GroupBox control is a rectangle with a label at the upper left corner. Use GroupBoxes for visual
impact, to convey that other dialog box controls are related. For example:

Control GroupBox
Title "Level of Detail"
Position 5, 30 Width 70 Height 40

9

8

10

11

12

5

4

3

2

1

6

7

100 MapBasic 11.5

Chapter 6: Creating the User Interface
Custom Dialog Boxes
RadioGroup

A RadioGroup control is a set of “radio buttons” (i.e., a list of choices where MapBasic only allows
the user to select one of the buttons at a time). For example:

Control RadioGroup
Title "&Full Details;&Partial Details"
Value 2
Into i_details
ID 2
Position 12, 42 Width 60

Picker

There are four types of Picker controls: PenPicker, BrushPicker, FontPicker, and SymbolPicker.
Each Picker control lets the user select a graphical style (line, fill, font, or symbol). The illustration
shown above includes a SymbolPicker control, showing a star-shaped symbol. For example:

Control SymbolPicker
Position 95, 45
Into sym_variable ID 3

ListBox

A ListBox control is a scrollable list from which the user can select one item. MapBasic automatically
appends a vertical scroll bar to the right edge of the ListBox if there are too many list items to be
displayed at one time. For example:

Control ListBox
Title "First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr"
Value 4
Into i_quarter
ID 4
Position 5, 90 Width 65 Height 35

MultiListBox

A MultiListBox is similar to a ListBox, except that the user can shift-click or control-click to select two
or more items from the list. For example:

Control MultiListBox
Title "Streets;Highways;Towns;Counties;States"
Value 3
ID 5
Position 95, 90 Width 65 Height 35

PopupMenu

A PopupMenu appears as a text item with a down arrow at the right edge. As the user clicks on the
control, a menu pops up, allowing the user to make a selection. For example:

Control PopupMenu
Title "Town;County;Territory;Entire state"
Value 2
MapBasic 11.5 101 User Guide

Custom Dialog Boxes
Into i_scope
ID 6
Position 5, 140

CheckBox

A CheckBox is a label with a box. The user can check or clear the box by clicking on the control. For
example:

Control CheckBox
Title "Include &Legend"
Into l_showlegend
ID 7
Position 95, 140

Buttons

Button controls are perhaps the most common type of control that you will use, since almost every
dialog box has at least one button. MapBasic provides special control types OKButton and
CancelButton for creating OK and Cancel buttons.

Control Button
Title "&Reset"
Calling reset_sub
Position 10, 165

Control OKButton
Position 65, 165
Calling ok_sub

Control CancelButton
Position 120, 165

Each dialog box should have no more than one OKButton or CancelButton control. Both controls
are optional. However, as a general rule, every dialog box should have at least one OK and/or a
Cancel button, so that the user has a way of dismissing the dialog box. If either control has a
handler, MapBasic executes the handler procedure and then resumes executing the statements that
follow the Dialog statement.

Every type of control is described in detail in the MapBasic Reference Guide and online Help. For
example, to read about ListBox controls, see Control Listbox.

Specifying a Control’s Initial Value
Most types of controls have an optional Value clause. This clause specifies how the control is set
when the dialog box first appears. For example, if you want the fourth item in a ListBox control to be
selected when the dialog box first appears, add a Value clause to the ListBox clause:

Value 4
102 MapBasic 11.5

Chapter 6: Creating the User Interface
Custom Dialog Boxes
If you omit the Value clause, MapInfo Professional uses a default value. For example, CheckBox
controls are checked by default. For more information about setting a Value clause, see the
appropriate Control description (for example, Control CheckBox) in the MapBasic Reference
Guide.

Reading a Control’s Final Value
Most types of controls allow an optional Into clause. This clause associates a program variable with
the control, so that MapInfo Professional can store the dialog box data in the variable. If you create a
control with an Into clause, and if the user closes the dialog box by clicking the OK button, MapInfo
Professional stores the control’s final value in the variable.

The Into clause must name a local or global variable in your program. The variable that you specify
must be appropriate for the type of control. For example, with a CheckBox control, the variable must
be Logical (TRUE meaning checked, FALSE meaning clear). See the MapBasic Reference Guide
for more information about the type of variable appropriate for each control.

MapInfo Professional only updates the Into variable(s) after the dialog box is closed, and
only if the dialog box is closed because the user clicked OK. If you need to read the value of
a control from within a dialog box handler procedure, call the ReadControlValue() function.

Responding to User Actions by Calling a Handler Procedure
Most types of controls can have handlers. A handler is a sub-procedure that MapBasic calls
automatically when and if the user clicks that control. The optional Calling handler clause specifies a
control’s handler; handler must be the name of a sub-procedure that takes no parameters. When the
user clicks on a control that has a handler procedure, MapBasic calls the procedure. When the
procedure finishes, the user can continue interacting with a dialog box (except in the case of
OKButton and CancelButton controls, which automatically close the dialog box).

Handler procedures allow your program to issue statements while the dialog box is on the screen.
For example, you may want your dialog box to contain a Reset button. If the user clicks on the
Reset button, your program resets all controls in the dialog box to their default values. To create
such a dialog box, you would need to assign a handler procedure to the Reset Button control. Within
the handler procedure, you would issue Alter Control statements to reset the dialog box’s controls.

A ListBox or MultiListBox control handler can be set up to respond one way to single-click events
while responding differently to double-click events. The handler procedure can call the
CommandInfo(CMD_INFO_DLG_DBL) function to determine whether the event was a single- or
double-click. For an example of this feature, see the Named Views sample program (nviews.mb).
The Named Views dialog box presents a list of names; if the user double-clicks on a name in the list,
the handler procedure detects that there was a double-click event, and closes the dialog box. In
other words, the user can double-click on the list, rather than single-clicking on the list and then
clicking on the OK button.

If two or more controls specify the same procedure name in the Calling clause, the named
procedure acts as the handler for both of the controls. Within the handler procedure, call the
TriggerControl() function to determine the ID of the control that was used.
MapBasic 11.5 103 User Guide

Custom Dialog Boxes
Most dialog box controls can have handler procedures (only GroupBox, StaticText, and EditText
controls cannot have handlers). You also can specify a special handler procedure that is called once
when the dialog box first appears. If your Dialog statement includes a Calling clause that is not part
of a Control clause, the Calling clause assigns a handler procedure to the dialog box itself.

The Alter Control statement may only be issued from within a handler procedure. Use Alter
Control to disable, enable, show, hide, rename, or reset the current setting of a control. The Alter
Control statement can also set which EditText control has the focus (i.e., which control is active).
For more information, see Alter Control in the MapBasic Reference Guide or online Help.

Enabled / Disabled Controls
When a control first appears, it is either enabled (clickable) or disabled (grayed out). By default,
every control is enabled. There are two ways to disable a dialog box control:

• Include the optional Disable keyword within the Dialog statement’s Control clause. When the
dialog box appears, the control is disabled.

• From within a handler procedure, issue an Alter Control statement to disable the control. If you
want the control to be disabled as soon as the dialog box appears, assign a handler procedure to
the dialog box itself, by including a Calling clause that is not within a Control clause. This
handler will be called once, when the dialog box first appears. Within the handler, you can issue
Alter Control statements. This technique is more involved, but it is also more flexible. For
example, if you want a control to be disabled, but only under certain conditions, you can place
the Alter Control statement within an If…Then statement.

If you are going to use an Alter Control statement to modify a dialog box control, you should
assign an ID number to the control by including an ID clause in the Dialog statement. For an
example, see Alter Control in the MapBasic Reference Guide or online Help.

Letting the User Choose From a List
The ListBox control presents a list of choices. There are two ways you can specify the list of items
that should appear in a ListBox control:

• Build a String expression that contains all of the items in the list, separated by semicolons. For
example:

Control ListBox
Title "First Qrtr;2nd Qrtr;3rd Qrtr;4th Qrtr;Year in Review"

• Declare an array of String variables, and store each list item in one element of the array. In the
Control clause, specify the keywords From Variable. For example, if you have created a String
array called s_list, you could display the array in a ListBox control using this syntax:

Control ListBox
Title From Variable s_list

You can use the From Variable syntax in all three of MapBasic’s list controls (ListBox,
MultiListBox, and PopupMenu).
104 MapBasic 11.5

Chapter 6: Creating the User Interface
Custom Dialog Boxes
Managing MultiListBox Controls
If your dialog box contains a MultiListBox control, you must use a handler procedure to determine
what list item(s) the user selected from the list. In most cases, a dialog box with a MultiListBox
control contains an OKButton control with a handler procedure. The OKButton’s handler procedure
calls the ReadControlValue() function within a loop. The first ReadControlValue() call returns the
number of the first selected list item; the next call returns the number of the next selected list item,
etc. When ReadControlValue() returns zero, the list of selected items has been exhausted. If
ReadControlValue() returns zero the first time you call it, none of the list items are selected.

Within a handler procedure, you can de-select all items in a MultiListBox control by issuing an Alter
Control statement, and assigning a value of zero to the control. To add a list item to the set of
selected items, issue an Alter Control statement with a positive, non-zero value. For example, to
select the first and second items in a MultiListBox control, you could issue the following statements:

Alter Control 1 Value 1
Alter Control 1 Value 2

Note that both the ReadControlValue() function and the Alter Control statement require a control
ID. To assign a control ID to a MultiListBox control, include the optional ID clause in the Control
MultiListBox clause.

Specifying Shortcut Keys for Controls
When a MapBasic application runs on MapInfo Professional, the application dialog boxes can assign
shortcut keys to the various controls. A shortcut key is a convenience that lets the user activate a
dialog box control using the keyboard instead of the mouse.

To specify a shortcut key for a control, include the ampersand character (&) in the control’s title
immediately before the character that is to be used as a shortcut key character. For example, the
following Control clause creates a Button control with R as the shortcut key:

Control Button
Title "&Reset"
Calling reset_sub

Because an ampersand appears in the Button control’s title, the user is able to activate the Reset
button by pressing Alt-R. If you want to display an ampersand character in a control, use two
successive ampersand characters (&&).

You cannot specify a shortcut key for an EditText control. However, if you place a StaticText label
to the left of an EditText control, and you specify a shortcut key for the StaticText label, the user
can set the focus on the EditText control by pressing the shortcut key of the StaticText label.

Modal versus Modeless Dialog Boxes

The Dialog statement creates a modal dialog box. In other words, the user must close the dialog
box (for example, by clicking OK or Cancel) before doing anything else with MapInfo Professional.

Some dialog boxes are modeless, meaning that the dialog box can remain on the screen while the
user performs other actions. For example, MapInfo Professional’s Image Registration dialog box is
modeless. The Dialog statement cannot create modeless dialog boxes. If you want to create
MapBasic 11.5 105 User Guide

Windows
modeless dialog boxes, you may need to develop an application in another programming
environment, such as Visual Basic, and call that application from within your MapBasic program (for
example, using the Run Program statement).

Closing a Dialog Box
After a MapBasic program issues a Dialog statement, it will continue to be displayed until one of four
things happens:

• The user clicks the dialog box’s OKButton control (if the dialog box has one).
• The user clicks the dialog box’s CancelButton control (if the dialog box has one).
• The user otherwise cancels the dialog box (for example, by pressing the Esc key).
• The user clicks a control that has an associated handler procedure that issues a Dialog Remove

statement.

Ordinarily, a dialog box terminates when the user clicks an OKButton or CancelButton control.
There are times when the user should be allowed to continue using a dialog box after pressing OK
or Cancel. For example, in some dialog boxes if the user presses Cancel, the application asks the
user to verify the cancellation (Are you sure you want to lose your changes?). If the user’s response
is No, the application should resume using the original dialog box.

The Dialog Preserve statement lets you allow the user to continue using a dialog box after the OK
or Cancel Button is clicked. You can only issue a Dialog Preserve statement from within the
handler sub-procedure of either the OKButton or CancelButton control.

The Dialog Remove statement halts a dialog box prematurely. When a control’s handler procedure
issues a Dialog Remove statement, the dialog box halts immediately. Dialog Remove is only valid
from within a dialog box control’s handler procedure. Dialog Remove can be used, for instance, to
terminate a dialog box when the user double-clicks a ListBox control. The Named Views sample
program (NVIEWS.MB) provides an example of allowing the user to double-click in a list.

Windows
A MapBasic application can open and manipulate any of MapInfo Professional’s standard window
types (Map windows, Browse windows, etc.).

To open a new document window, issue one of these statements: Map, Browse, Graph, Layout, or
Create Redistricter. Each document window displays data from a table, so you must have the
proper table(s) open before you open the window.

To open one of MapInfo Professional’s other windows (for example, the Help window or the
Statistics window), use the Open Window statement.

Many window settings can be controlled through the Set Window statement. For example, you
could use the Set Window statement to set a window’s size or position. There are also other
statements that let you configure attributes of specific window types. For example, to control the
order of layers in a Map window, you would issue a Set Map statement. To control the display of a
grid in a Browse window, you would issue a Set Browse statement.
106 MapBasic 11.5

Chapter 6: Creating the User Interface
Windows
Each document window (Map, Browser, Layout, Graph, or Redistrict) has an Integer identifier, or
window ID. Various statements and functions require a window ID as a parameter. For example, if
two or more Map windows are open, and you want to issue a Set Map statement to modify the
window, you should specify a window ID so that MapInfo Professional knows which window to
modify.

To obtain the window ID of the active window, call the FrontWindow() function. Note that when you
first open a window (for example, by issuing a Map statement), that new window is the active
window. For example, the OverView sample program issues a Map statement to open a Map
window, and then immediately calls the FrontWindow() function to record the ID of the new Map
window. Subsequent operations performed by the OverView application refer to the ID.

A window ID is not a simple, ordinal number, such as 1, 2, etc. The number 1 (one) is not a
valid window ID. To obtain a window ID, you must call a function such as FrontWindow() or
WindowID(). For example, to obtain the window ID of the first window that is open, call
WindowID(1). To determine the number of open windows, call NumWindows().

The WindowInfo() function returns information about an open window. For example, if you want to
determine whether the active window is a Map window, you can call FrontWindow() to determine
the active window’s ID, and then call WindowInfo() to determine the active window’s window type.

To close a window, issue a Close Window statement.

Specifying a Window’s Size and Position
There are two ways to control a window’s size and position:

• Include the optional Position, Width, and Height clauses in the statement that opens the
window. For example, the following Map statement not only opens a Map window, it also
specifies the window’s initial size and position:

Map From world
Position (2,1) Units "in"
Height 3 Units "in"
Width 4 Units "in"

• Issue a Set Window statement to control a window’s size or position after the window is open.
Note that the Set Window statement requires an Integer window ID.

Map Windows
A Map window displays mappable objects from one or more tables. When opening a Map window,
you must specify the tables that you want to display; each table must already be open.

The following statement opens a Map window:

Map From world, worldcap, grid30

This example maps the objects from the World, Worldcap, and Grid30 tables.
MapBasic 11.5 107 User Guide

Windows
To add layers to a Map window, issue an Add Map Layer statement. To remove map layers from a
Map window, issue a Remove Map Layer statement. If you want to temporarily hide a map layer,
you do not need to remove it from the map; instead, you can use the Set Map statement to set that
layer’s Display attribute to off.

The Set Map statement is a very powerful statement that can control many aspects of a Map
window. By issuing Set Map statements, your program can control map attributes that the user
would control through the Map > Layer Control and Map > Options commands. For more
information, see Set Map in the MapBasic Reference Guide.

Use the Shade statement to create a thematic map (a map that uses color coding or other graphical
devices to display information about the data attached to the map). The Shade statement lets you
create the following of MapInfo Professional’s styles of thematic maps: ranges, bar charts, pie
charts, graduated symbols, dot density, or individual values. When you create a thematic map,
MapInfo Professional adds a thematic layer to the affected window. To modify a thematic map, use
the Set Shade statement.

Use the Create Grid statement to create a thematic type that enables analysis unconstrained by
pre-existing geographic boundaries. Surface themes provide a continuous color visualization for
point data sets that you previously looked at as a point thematic or graduated symbol. An inverse
distance weighted interpolator populates the surface values from your MapInfo Professional point
table. This powerful thematic can be used in many industries like telco, retail analysis, insurance,
traditional GIS areas, and many more. This new theme and grid format is supported by open APIs
for additional grid formats and interpolators which allows customization by our developer
community. Refer to the Create Grid statement in the MapBasic Reference Guide. To modify a
surface thematic, use the Inflect clause of the Set Map statement.

To change a Map window’s projection, you can issue a Set Map statement with a CoordSys clause.
Alternately, you can display a map in a specific projection by saving your table(s) in a specific
projection (using the Commit Table…As statement).

To control whether scroll bars appear on a Map window, issue a Set Window statement.

Using Animation Layers to Speed Up Map Redraws
If the Add Map Layer statement includes the Animate keyword, the layer becomes a special layer
known as the animation layer. When an object in the animation layer is moved, the Map window
redraws very quickly, even if the map is very complex.

The animation layer is useful in realtime applications, where map features are updated frequently.
For example, you can develop a fleet-management application that represents each vehicle as a
point object. You can receive current vehicle coordinates by using GPS (Global Positioning Satellite)
technology, and then update the point objects to show the current vehicle locations on the map. In
this type of application, where map objects are constantly changing, the map redraws much more
quickly if the objects being updated are stored in the animation layer instead of a conventional layer.

The following example opens a table and makes the table an animation layer:

Open Table "vehicles" Interactive
Add Map Layer vehicles Animate
108 MapBasic 11.5

Chapter 6: Creating the User Interface
Windows
Animation layers have the following restrictions:

• When you add an animation layer, it does not appear in the Layer Control window.
• The user cannot interact with the animation layer by clicking in the Map window. For example,

the user cannot use the Info tool to click on a point in the animation layer.
• Each Map window can have only one animation layer. The animation layer automatically

becomes the map’s top layer. If you attempt to add an animation layer to a Map window that
already has an animation layer, the new animation layer replaces the old one.

• Workspace files do not preserve information about animation layers.
• To terminate the animation layer processing, issue a Remove Map Layer Animate statement.

To see a demonstration of animation layers, run the sample program ANIMATOR.MBX.

Performance Tips for Animation Layers

The purpose of the animation layer feature is to allow fast updates to small sections of the Map
window. To get the best redraw speed possible:

• Avoid displaying the Map window in a Layout window. If the Map window that has the animation
layer is displayed in a Layout window, screen updates may not be as fast.

• Make sure that the layer you are using as an animation layer is only displayed once in the Map
window.

For example, suppose you are working with two tables: Roads (a table containing a street map), and
Trucks (a table containing point objects, each of which represents a delivery truck). Suppose your
Map window already contains both layers. If you want to turn the Trucks layer into an animation
layer, you need to issue the following statement:

Add Map Layer Trucks Animate

However, you now have a problem: the Trucks layer now appears in the Map window twice-once as
a conventional map layer, and once as an animation layer. Because the Trucks layer is still being
displayed as a conventional layer, MapInfo Professional will not be able to perform fast screen
updates. In other words, updates to the Map window will redraw as slowly as before, which defeats
the purpose of the animation layer feature.

The following example demonstrates how to handle this situation. Before you add the Trucks layer
as an animation layer, turn off the display of the “conventional” Trucks layer:

’temporarily prevent screen updates
Set Event Processing Off

’set the original Trucks layer so it won’t display
Set Map Layer "Trucks" Display Off

’add the Trucks layer to the map, as an animation layer
Add Map Layer Trucks Animate

’allow screen updates again
Set Event Processing On

' At this point, there are two Trucks layers in the
' Map window. However, the "conventional" Trucks layer
MapBasic 11.5 109 User Guide

Windows
' is not displayed, so it will not slow down the display
' of the "animated" Trucks layer.

Browser Windows
A Browser window displays columns of table data. The following statement opens a simple Browser
window that displays all the columns in the World table:

Browse * From world

The asterisk specifies that every column in the table should appear in the Browser. To open a
Browser window that displays only some of the columns, replace the asterisk with a list of column
expressions. For example, the following statement opens a Browser window that shows only two
columns:

Browse country, capital From world

The Browse statement can specify column expressions that calculate derived values. For example,
the following statement uses the Format$() function to create a formatted version of the World
table’s Population column. As a result, the second column in the Browser contains commas to make
the population statistics more readable.

Browse country, Format$(Population, ",#") From world

If the Browse statement specifies a simple column name (for example, country), the Browser
window allows the user to edit the column values (unless the table is read-only). However, if the
Browse statement specifies an expression that is more complex than just a column name, the
corresponding column in the Browser window is read-only. Thus, if you want to create read-only
columns in a Browser window, you can do so by browsing an expression, rather than a simple
column name.

The expressions that you specify in the Browse statement appear as column headers across the
top of the Browser window. The following statement shows how you can override the default column
expression with an alias column header:

Browse country, Format$(Population, ",#") "Pop" From world

Because the String expression “Pop” appears after the column expression, “Pop” will be the column
header that appears on the Browser window.

You can also set the initial default position of the Browser window. The following example positions
the initial display so that the second column of the fifth row is in the upper left position of the Browser
display:

Browse * From world Row 5 Column 2

Graph Windows
A Graph window contains a graph containing labels and values computed from a table. This sample
displays a graph using one column for labels and another for data:

Graph country, population From world
110 MapBasic 11.5

Chapter 6: Creating the User Interface
Windows
The first item after the keyword Graph is the name of the column that provides labels for the data.
Each following item is an expression that provides the graph with data. The example above is a
simple expression in which the data is one column of the table. You can use any valid numeric
expression.

Layout Windows
A Layout window represents a page layout. To open a Layout window, use the Layout statement.

Most Layout windows contain one or more frame objects. To create a frame object, issue a Create
Frame statement. Layout windows also can contain any type of Map object. For example, to place a
title on the page layout, create a text object by issuing a Create Text statement.

A Layout window can be treated as a table. For example, you can add objects to a Layout by issuing
an Insert statement that refers to a table name such as “Layout1.” However, strictly speaking, the
objects that appear on a layout are not saved in table format (although they are saved in workspace
files). For more information on accessing a Layout window as if it were a table, see Working With
Tables.

Objects stored on Layout windows must use a Layout coordinate system, which defines object
coordinates in terms of “paper” units such as inches or millimeters. For more information on Layout
coordinates, see Graphical Objects.

Redistrict Windows
Use the Create Redistricter statement to begin a redistricting session. The Create Redistricter
statement lets your program control all redistricting options that the user might configure through the
Window > New Redistrict Window dialog box.

Once a redistricting session has begun, you can control the Districts Browser by issuing Set
Redistricter statements. To perform actions from the Redistrict menu, use the Run Menu
Command statement.

For example, to assign objects to a district (as if the user had chosen Redistrict > Assign Selected
Objects), issue the following statement:

Run Menu Command M_REDISTRICT_ASSIGN

To end a redistricting session, close the Districts Browser by issuing a Close Window statement.
Note that values in the base table change as objects are re-assigned from district to district. After a
redistricting session, you must save the base table if you want to retain the map objects’ final district
assignments. To save a table, issue a Commit statement.

For more information about redistricting, see the MapInfo Professional documentation.

Message Window
You can use MapBasic’s Print statement to print text to the Message window. For example, the
following statement prints a message to the Message window:

Print "Dispatcher is now on line."
MapBasic 11.5 111 User Guide

Windows
Customizing the Info Window

The Info window displays a row from a table. The user can edit a row by typing into the Info window.
To control and customize the Info window, use the Set Window statement. The following picture
shows a customized Info window:

The following program creates the customized Info window shown above.

Include "mapbasic.def"
Open Table "World" Interactive
Select

Country, Capital, Inflat_Rate + 0 "Inflation"
From World
Into World_Query

Set Window Info
Title "Country Data"
Table World_Query Rec 1
Font MakeFont("Arial", 1, 10, BLACK, WHITE)
Width 3 Units "in" Height 1.2 Units "in"
Position (2.5, 1.5) Units "in"
Front

Note the following points about this example:

• Ordinarily, the Info window’s title bar reads “Info Tool.” This program uses the Title clause to
make the title bar read “Country Data.”

• To specify which row of data appears in the window, use the Set Window statement’s
Table…Rec clause. The example above displays record number 1 from the World_Query table.
(World_Query is a temporary table produced by the Select statement.)

• The Info window displays a box for each field in the record; the scroll-bar at the right edge of the
window allows the user to scroll down through the fields. To limit the number of fields displayed,
the example above uses a Select statement to build a temporary query table, World_Query. The
World_Query table has only three columns; as a result, the Info window displays only three
fields.

To make some, but not all, of the fields in the Info window read-only:

1. Use a Select statement to produce a temporary query table.

2. Set up the Select statement so that it calculates expressions instead of simple column values.
The Select statement shown above specifies the expression “Inflat_Rate + 0" for the third
column value. (The “Inflation” string that follows the expression is an alias for the expression.)

Select
Country, Capital, Inflat_Rate + 0 "Inflation"

3. In the Set Window Info statement, use the Table… Rec clause to specify which record is
displayed. Specify a row from the query table, as in the example above. When a column in the
112 MapBasic 11.5

Chapter 6: Creating the User Interface
ButtonPads (Toolbars)
query table is defined with an expression, the corresponding box in the Info window is read-only.
(In the example above, the Inflation field is read-only.)

4. When the user types a new value into the Info window, MapInfo Professional automatically
stores the new value in the temporary query table, and in the base table on which the query was
based. You do not need to issue additional statements to apply the edit to the table. (However,
you do need to issue a Commit statement if you want to save the user’s edits.)

To make all fields in the Info window read-only, issue the following statement:

Set Window Info ReadOnly

All of the fields in the Info window are read-only when you display a table that is a join (such
as a StreetInfo table) or a query table that uses the Group By clause to calculate aggregate
values.

ButtonPads (Toolbars)
A ButtonPad is a resizable, floating window which contains one or more buttons. The user can
initiate various types of actions by choosing buttons from a ButtonPad.

The terms “ButtonPad” and “toolbar” mean exactly the same thing. The MapInfo Professional user
interface refers to toolbars. For example, MapInfo Professional’s Options menu has a Toolbars
command, which lets the MapInfo Professional user show or hide toolbars. Meanwhile, the
MapBasic language syntax refers to toolbars as ButtonPads. For example, use the Alter ButtonPad
statement to show or hide a toolbar.

MapInfo Professional provides several standard ButtonPads, such as the Main ButtonPad. A
MapBasic program can add custom buttons to existing ButtonPads, or create entirely new
ButtonPads.

What Happens When the User Chooses a Button?
Like menu items, custom buttons have handler procedures. When a user works with a custom
button, MapBasic automatically calls that button’s handler procedure. Thus, if you want MapBasic to
display a custom dialog box each time the user clicks on a button, create a sub procedure which
displays the dialog box, and make that procedure the handler for the custom button.

A MapBasic program can create three different types of buttons: ToolButtons, ToggleButtons, and
PushButtons. The button type dictates the conditions under which MapBasic calls that button’s
handler.

• PushButton: When the user clicks on a PushButton, the button springs back up, and MapBasic
calls the PushButton’s handler procedure.
The Layer Control button is an example of a PushButton. Clicking on the Layer Control button
has an immediate effect (a dialog box displays), but there is no lasting change to the status of
the button.
MapBasic 11.5 113 User Guide

ButtonPads (Toolbars)
• ToggleButton: When the user clicks on a ToggleButton, the button toggles between being
checked (pushed in) and being unchecked (not pushed in). MapBasic calls the button’s handler
procedure each time the user clicks on the ToggleButton.
The Show/Hide Legend Window button is an example of a ToggleButton. Clicking on the button
has an immediate effect: showing or hiding the Legend Window. Furthermore, there is a lasting
change to the button’s status: the button toggles in or out.

• ToolButton: When the user clicks on a ToolButton, that button becomes the active tool, and
remains the active tool until the user chooses a different tool. MapBasic calls the button’s
handler procedure if the user clicks in a Map, Browse, or Layout window while the custom button
is the selected tool.
The Magnify tool is an example of a ToolButton. Choosing the tool does not produce any
immediate effects; however, choosing the tool and then clicking in a Map window does have an
effect.

MapBasic Statements Related To ButtonPads
The following statements and functions let you create and control custom buttons and ButtonPads:

Create ButtonPad

This statement creates a new ButtonPad and provides a custom icon for a button. You have to
define both small and large sized buttons with resource file ids of n and n+1 respectively.

Alter ButtonPad

After creating a custom ButtonPad, your program can alter various attributes of the ButtonPad. The
Alter ButtonPad statement lets you reposition, show, or hide a ButtonPad, or add or remove
buttons to or from a ButtonPad.

The Alter ButtonPad statement lets you modify any ButtonPad, even standard pads, such as Main.
If your application needs only one or two custom buttons, you may want to add those buttons to the
standard Main ButtonPad, instead of creating a new ButtonPad.

Alter Button

This statement modifies the status of a single button. Use the Alter Button statement to disable (de-
activate) or enable (activate) a button, or to change which button is currently selected.

CommandInfo()

Use the CommandInfo() function within a button’s handler procedure to query information about
how the user has used the custom button. For example, if the user chooses a ToolButton and then
clicks in a Map window, the CommandInfo() function can read the x- and y-coordinates of the
location where the user clicked.

If you create two or more buttons that call the same handler procedure, that procedure can call
CommandInfo(CMD_INFO_TOOLBTN) to determine which button is in use.
114 MapBasic 11.5

Chapter 6: Creating the User Interface
ButtonPads (Toolbars)
Thus, within a button’s handler procedure, you might call CommandInfo() several times: Once to
determine which button the user has chosen; once to determine the x-coordinate of the location
where the user clicked; once to determine the y-coordinate; and once to determine whether or not
the user held down the shift key while clicking.

ToolHandler

ToolHandler, a special procedure name, gives you an easy way to add one button to the Main
ButtonPad. If your MapBasic program includes a procedure named ToolHandler, MapBasic
automatically adds one ToolButton to the Main ButtonPad. Then, if the user chooses the ToolButton,
MapBasic automatically calls the ToolHandler procedure each time the user clicks in a Map,
Browse, or Layout window.

A MapBasic program cannot customize the button icon or draw mode associated with the
ToolHandler procedure; the icon and cursor always use a simple + shape. If you need to specify a
custom icon or cursor, use the Create ButtonPad or Alter ButtonPad statement instead of a
ToolHandler procedure.

If the user runs multiple MapBasic applications at one time, and each application has its own
ToolHandler, each application adds its own button to the Main ButtonPad.

Creating A Custom PushButton
The following program creates a custom ButtonPad containing a PushButton. The button_prompt
procedure is the button’s handler; therefore, whenever the user clicks the custom PushButton,
MapBasic automatically calls the button_prompt procedure.

Include "icons.def"
Declare Sub Main
Declare Sub button_prompt

Sub Main
Create ButtonPad "Custom" As

PushButton
Icon MI_ICON_ZOOM_QUESTION
Calling button_prompt
HelpMsg "Displays the query dialog\nQuery"

Show
End Sub
Sub button_prompt

’ This procedure called automatically when
’ the user chooses the button.
’ ...

End Sub

The Main procedure contains only one statement: Create ButtonPad. This statement creates a
custom ButtonPad, called “Custom,” and creates one custom button on the ButtonPad.

The PushButton keyword tells MapBasic to make the custom button a PushButton.
MapBasic 11.5 115 User Guide

ButtonPads (Toolbars)
The Icon clause tells MapBasic which icon to display on the custom button. The identifier,
MI_ICON_ZOOM_QUESTION, is defined in the file icons.def. To see a list of standard MapInfo
Professional icon identifiers, examine icons.def.

The Calling clause tells MapBasic to call the button_prompt procedure whenever the user clicks on
the custom button.

The HelpMsg clause defines both a status bar help message and a ToolTip help message for the
button. Help messages are discussed in Assigning Help Messages to Buttons on page 120.

See the Create ButtonPad statement in the MapBasic Reference for image size considerations.

Adding A Button To The Main ButtonPad
The preceding example used the Create ButtonPad statement to create an all-new ButtonPad.
MapBasic can also add custom buttons to MapInfo Professional’s default ButtonPads, such as Main.
To add a button to an existing ButtonPad, use the Alter ButtonPad statement, instead of the Create
ButtonPad statement, as shown in the following example:

Alter ButtonPad "Main"
Add Separator
Add PushButton

Icon MI_ICON_ZOOM_QUESTION
Calling button_prompt
HelpMsg "Displays the query dialog\nQuery"

Show

The Add PushButton clause adds a custom button to the Main ButtonPad, while the Add
Separator clause places an empty space between the new button and the previous button. The Add
Separator clause is optional; use it when you want to separate buttons into distinct groups.

MapInfo Professional includes a special ButtonPad, called Tools, so that MapBasic utility programs
will have a place where they can add custom buttons. For example, the ScaleBar utility adds its
button to the Tools ButtonPad.

Creating A Custom ToolButton
The preceding examples created custom PushButtons. MapBasic also can create custom
ToolButtons, which act like MapInfo Professional tools, such as the Magnify and Line tools. If a
program creates a custom ToolButton, the user can choose that tool, then use that tool to click, and
sometimes drag, on a Map, Browse, or Layout window.

The following example creates a custom ToolButton. After selecting the tool, the user can click and
drag in a Map window. As the user drags the mouse, MapInfo Professional displays a dynamically-
changing line connecting the current cursor position to the location where the user clicked.

Include "icons.def"
Include "mapbasic.def"
Declare Sub Main
Declare Sub draw_via_button
Sub Main

Create ButtonPad "Custom" As
ToolButton
116 MapBasic 11.5

Chapter 6: Creating the User Interface
ButtonPads (Toolbars)
Icon MI_ICON_LINE
DrawMode DM_CUSTOM_LINE
Cursor MI_CURSOR_CROSSHAIR
Calling draw_via_button
HelpMsg "Draws a line on a Map window\nDraw Line"

Show
End Sub
Sub draw_via_button

Dim x1, y1,x2, y2 As Float
If WindowInfo(FrontWindow(),WIN_INFO_TYPE) <> WIN_MAPPER Then

Note "This tool may only be used on a Map window. Sorry!"
Exit Sub

End If

’ Determine map location where user clicked:
x1 = CommandInfo(CMD_INFO_X)
y1 = CommandInfo(CMD_INFO_Y)
x2 = CommandInfo(CMD_INFO_X2)
y2 = CommandInfo(CMD_INFO_Y2)

’ Here, you could create objects based on x1, y1, x2, and y2.
End Sub

In this example, the Create ButtonPad statement includes the ToolButton keyword instead of the
PushButton keyword. This tells MapBasic to make the custom button act like a drawing tool.

The button definition includes a DrawMode clause, which tells MapBasic whether the user can drag
after clicking with the tool. The example above uses the DM_CUSTOM_LINE drawing mode;
therefore, the user is able to click and drag with the custom tool, just as you can click and drag when
using MapInfo Professional’s standard Line tool. When a tool uses the DM_CUSTOM_POINT mode,
the user cannot drag after clicking. For a listing of all available drawing modes, see Alter ButtonPad
in the MapBasic Reference Guide or online Help.

The DrawMode clause also controls what the user sees while dragging. With the
DM_CUSTOM_LINE mode, MapBasic draws a line between the cursor location and the point where
the user first clicked. With the DM_CUSTOM_RECT mode, MapBasic draws a rectangular marquee
while the user drags the mouse. Regardless of which DrawMode is used with a ToolButton, MapInfo
Professional calls the button’s handler procedure after the user clicks and releases the mouse
button. The handler procedure can call CommandInfo() to determine where the user clicked.

If the user cancels the operation by pressing the Esc key, MapInfo Professional does not call
the handler procedure.

Choosing Icons for Custom Buttons
When you define a custom button, you control the icon that appears on the button. To specify which
icon you want to use, use the Icon clause.
MapBasic 11.5 117 User Guide

ButtonPads (Toolbars)
The keyword Icon is followed by a code from ICONS.DEF. For example, the following statement
defines a custom button that uses the icon for MapInfo Professional’s Info button. The code
MI_ICON_INFO is defined in ICONS.DEF.

Alter ButtonPad "Main"
Add Separator
Add PushButton

Icon MI_ICON_INFO
Calling procedure_name

MapInfo Professional provides many built-in icons, most of which are not used in MapInfo
Professional’s standard user interface. To see a demonstration of the built-in icons, run the
sample program Icon Sampler (ICONDEMO.MBX) and then choose an item from the Icon
Sampler menu. To see the code for a particular icon, position the mouse over that icon.

The button’s ToolTip shows you the icon code. You also can copy an icon’s code to the clipboard:

1. Run the Icon Sampler application (ICONDEMO.MBX).

2. Choose an item from the Icon Sampler menu. A custom ButtonPad appears.

3. Click on the button whose icon you want to use. A dialog box appears.

4. Press Ctrl-C (the Windows shortcut for the Copy command).

5. Click OK to dismiss the dialog box.

6. Switch to MapBasic. Press Ctrl-V (the shortcut for Paste) to paste the code into your program.

Selecting Objects by Clicking With a ToolButton
If the user chooses a custom ToolButton and then clicks on a map object, the object is not selected;
instead, MapInfo Professional calls the custom ToolButton’s handler procedure. If you need to select
the object on which the user clicked, issue a Select statement from within the handler procedure.
118 MapBasic 11.5

Chapter 6: Creating the User Interface
ButtonPads (Toolbars)
The following handler procedure selects the town boundary region where the user clicked. To
determine the coordinates where the user clicked, call CommandInfo(). Then, to select objects at
that location, issue a Select statement with a Where clause, and specify a geographic operator such
as Contains. The following example selects all the town regions that contain the location where the
user clicked.

Sub t_click_handle
Dim fx, fy As Float

fx = CommandInfo(CMD_INFO_X)
fy = CommandInfo(CMD_INFO_Y)
Select * From towns

Where obj Contains CreatePoint(fx, fy)

End Sub

Instead of using a Select statement, you could call the SearchPoint() or SearchRect()
function to perform a search, and then call SearchInfo() to process the search results. For
an example of this technique, see SearchInfo() in the MapBasic Reference Guide or online
Help.

Another approach would be to define a procedure called SelChangedHandler. If the user is running
an application that contains a SelChangedHandler procedure, MapInfo Professional automatically
calls that procedure every time the selection changes. The user could select objects by pointing and
clicking with MapInfo Professional’s standard Select tool (the arrow-shaped icon at the upper left
corner of MapInfo Professional’s Main ButtonPad), and your application could respond by issuing
statements within the SelChangedHandler procedure.

Including Standard Buttons in Custom ButtonPads
You can include any of MapInfo Professional’s standard buttons (such as the Select button) on
custom ButtonPads. For example, the following statement creates a custom ButtonPad containing
two buttons: The standard MapInfo Professional Select button, and a custom button.

Create ButtonPad "ToolBox" As
’ Here is the standard Select button...
ToolButton

Icon MI_ICON_ARROW
Calling M_TOOLS_SELECTOR
HelpMsg "Select objects for editing\nSelect"

’ Here is a custom ToolButton...
ToolButton

Icon MI_ICON_LINE
DrawMode DM_CUSTOM_LINE
Calling sub_procedure_name
HelpMsg "Draw New Delivery Route\nNew Route"
MapBasic 11.5 119 User Guide

ButtonPads (Toolbars)
The first button’s Calling clause specifies M_TOOLS_SELECTOR, which is a numeric code defined
in MENU.DEF. This code represents MapInfo Professional’s Select button. Every standard MapInfo
Professional button has a corresponding code in MENU.DEF. Because the second button is a
custom button, its Calling clause specifies the name of a procedure, rather than a numeric code.

Note that the custom button includes a DrawMode clause, but the Select button does not. When you
place a standard button on a custom pad, you should omit the DrawMode clause, because each of
MapInfo Professional’s standard buttons already has a pre-defined draw mode. You should only
specify a DrawMode clause when creating a custom ToolButton.

CAUTION: ToolButtons and ToggleButtons are not interchangeable. You cannot convert
one type of button to another type merely by replacing the ToolButton keyword
with the ToggleButton keyword (or vice versa). ToolButtons return x/y
coordinates in response to the user clicking on a window. ToggleButtons,
however, do not return coordinates, and they respond as soon as the user clicks
on the button.

If you include standard MapInfo Professional buttons in your custom ButtonPads, make sure that
you do not accidentally change a ToolButton to a ToggleButton. To see how MapInfo Professional’s
standard buttons are defined, view the MapInfo Professional menus file, MAPINFOW.MNU. The
menus file contains the Create ButtonPad statements that define MapInfo Professional’s
ButtonPads.

You can copy button definitions out of MAPINFOW.MNU and paste them into your programs.

Assigning Help Messages to Buttons
Your users may not understand the purpose of a toolbar button just by looking at its icon. Therefore,
MapBasic lets you create two types of on-screen help messages to assist your users:

• Status bar help. Used to show a brief description of the button, this type of help message
appears on the MapInfo Professional status bar (assuming that the status bar is currently
visible).

• ToolTip help. Used to show the name of the button, this type of help message appears next to
the mouse cursor.

In earlier versions of MapInfo Professional, status bar help only appeared when the user clicked on
a button. In version 4.0 and later, both the status bar help and ToolTip help appear when the user
leaves the mouse cursor positioned over a toolbar button.

Both types of help messages are defined through the HelpMsg clause, in the Create ButtonPad
and Alter ButtonPad statements. Within the HelpMsg clause, you specify one string that contains
the status bar help message, followed by the letters \n, followed by the ToolTip message.

For example:

Create ButtonPad "Custom" As
PushButton

Icon MI_ICON_ZOOM_QUESTION
Calling generate_report
HelpMsg "This button generates reports\nGenerate Report"

Show
120 MapBasic 11.5

Chapter 6: Creating the User Interface
Cursors
In this example, the custom button’s status bar help message is “This button generates reports” and
its ToolTip message is “Generate Report.” To show or hide the status bar, use the StatusBar
statement.

Docking a ButtonPad to the Top of the Screen
Use the Alter ButtonPad statement to attach a toolbar to the top edge of the screen. (This is
sometimes known as “docking” the toolbar.) For example, the following statement docks the Main
toolbar:

Alter ButtonPad "Main" Fixed

The keyword Fixed specifies that the pad should be docked to the top of the screen. To change a
toolbar from docked to floating, specify Float instead of Fixed. The Fixed and Float keywords can
also be used within the Create ButtonPad statement, so that you can set the docked status at the
moment you create the toolbar.

To determine whether a toolbar is currently docked, call the ButtonPadInfo() function.

Other Features of ButtonPads
MapBasic also offers the following ButtonPad-related features:

• Enabled/Disabled Buttons. A MapBasic program can disable or enable custom buttons as
needed. For details, see the MapBasic Reference Guide, Alter ButtonPad.

• Custom Button Icons. You can use a resource editor to create custom icons, and use those
custom icons on MapBasic ButtonPads.

• Custom Draw Cursors. The cursor is the shape that moves as you move the mouse. By
default, all custom MapBasic buttons use a simple cursor, shaped like a pointer. However, you
can use a resource editor to create custom cursors.
The MapBasic development environment does not include a resource editor. However,
MapBasic programs can incorporate bitmaps and cursors created using other resource editors.
For more information about creating custom icons and cursors, see Integrated Mapping.

Cursors
MapInfo Professional users can change the crosshair cursor style by pressing the X key. Cursors in
the MapInfo Professional application are independent of cursors in the MapBasic application, so
changing the cursor style in MapInfo Professional does not change the cursor style in MapBasic and
visa versa.

There is no MapBasic support for changing the crosshair cursor style for MapInfo Professional tools,
and there is no MapBasic support for changing cursor style by pressing the X key within a MapBasic
application. However, you can access the crosshair cursor styles for use within your MapBasic
applications. The icons.def file defines the following crosshair cursors.
MapBasic 11.5 121 User Guide

Integrating Your Application Into MapInfo Professional
The following is an example that sets the cursor style:

Create ButtonPad "TestCursor" as ToolButton
calling my_handler cursor MI_CURSOR_TINY_CROSSHAIR

Integrating Your Application Into MapInfo Professional
The preceding sections have discussed how a MapBasic application can customize the user
interface by creating custom menus, dialog boxes, windows, and ButtonPads. Once you have
completed your application, however, one issue will remain: what steps does the user have to take
to run your application, so that your customized user-interface will take effect?

Any MapInfo Professional user can run a MapBasic application by choosing Tools > Run MapBasic
Program. However, you may want to set up your application so that it runs automatically, instead of
forcing your users to choose File > Run MapBasic Program every time they run MapInfo
Professional. If you are creating what is known as a turn-key system, you probably want your
application to run automatically, as soon as the user launches MapInfo Professional.

Using Windows, you can change the command line of a shortcut icon in a similar manner. Right-click
the shortcut icon, choose Properties, and click on the Shortcut tab.

Ordinarily, MapInfo Professional displays the Quick Start dialog box as soon as the user runs it
(unless the user has cleared the Display Quick Start dialog box check box in the Startup
Preferences dialog box). However, if you add the name of a MapBasic application to the command
that launches MapInfo Professional, then the Quick Start dialog box will not appear. Depending on
the nature of your application, this behavior may or may not be desirable. If you want your
application to run automatically, without disabling the Quick Start dialog box, you may need to use a
different method for loading your application. Instead of modifying the MapInfo Professional
command line, you may want to create a special workspace, called the Startup workspace.

MI_CURSOR_CROSSHAIR 138 displays a small blue crosshair cursor

MI_CURSOR_LRG_CROSSHAIR 164 displays a large blue crosshair cursor

MI_CURSOR_TINY_CROSSHAIR 165 displays a tiny XOR crosshair cursor
122 MapBasic 11.5

Chapter 6: Creating the User Interface
Integrating Your Application Into MapInfo Professional
Loading Applications Through the Startup Workspace
“Startup” is a special name for a workspace. If a startup workspace exists on the user’s system,
MapInfo Professional loads the workspace automatically. If the startup workspace contains a Run
Application statement, MapInfo Professional runs the specified application.

For example, if you want to run the ScaleBar application, you could create a startup workspace that
looks like this:

!Workspace
!Version 600
!Charset Neutral
Run Application "scalebar.mbx"

The first three lines are required for MapInfo Professional to recognize the file as a workspace. The
fourth line, in this example, launches a MapBasic application by executing a Run Application
statement.

The presence of a startup workspace has no effect on the display of the Quick Start dialog box.
MapInfo Professional loads the startup workspace (if there is one), and then displays the Quick Start
dialog box (unless the user has configured the system so that the Quick Start dialog box never
displays).

On Windows, the startup workspace has the name STARTUP.WOR and can be located in the
directory in which MapInfo Professional is installed or in the user’s private Windows directory (the
directory where WIN.INI is stored). If a STARTUP.WOR exists in both directories, both workspaces
will be executed when the user starts MapInfo Professional.

In a networked environment, if you want the startup workspace to apply to all MapInfo Professional
users on the network, you should place the startup workspace file in the directory where MapInfo
Professional is installed. If you do not want all the network users to run the same startup workspace
file, you should use the alternate location for the startup workspace (for example, on Windows, place
the workspace in the users’ private Windows directories).

Manipulating Workspaces through MapBasic
Since workspaces are simply text files, you can create and edit a startup workspace using any text
editor. Furthermore, since a MapBasic program can perform file input/output, your MapBasic
program can automate the maintenance of the startup workspace.

To see how a MapBasic program can manipulate a workspace file, try this:

1. Choose MapInfo Professional’s Tools > Run MapBasic Program command to run the TextBox
application.

2. Choose Tools > TextBox > About TextBox to display the About TextBox dialog box.

3. Click on the Auto-Load button on the About TextBox dialog box. MapInfo Professional displays
a dialog box that lets you activate automatic the loading of the TextBox application.

4. Choose OK on the Enable Automatic Loading dialog box. MapInfo Professional displays a
message indicating that the TextBox application is now configured to run automatically. Choose
OK on the About TextBox dialog box.
MapBasic 11.5 123 User Guide

Performance Tips for the User Interface
5. Exit MapInfo Professional, then restart it. Note that in this new MapInfo Professional session, the
TextBox application runs automatically; you do not need to choose Tools > Run MapBasic
application.
When you choose OK in step 4, the TextBox application adds a Run Application statement to
the startup workspace file. If the startup workspace file does not exist, the TextBox application
creates it.

The maintenance of the startup workspace is handled by functions and procedures in the program
module auto_lib.mb. Many of the sample programs that are bundled with MapInfo Professional
contain the same functionality; for example, a MapInfo Professional user can set up the ScaleBar
application to run automatically by choosing the Auto-Load button on the About ScaleBar dialog
box.

The auto_lib.mb program module is one of the sample programs included with MapBasic. If you
want your application to include the Auto-Load feature, follow the instructions that appear in the
comments at the top of auto_lib.mb.

Performance Tips for the User Interface

Animation Layers
If you are making frequent updates to objects in a Map window, using an Animation Layer can make
the window redraw more quickly. Animation Layers are described in Using Animation Layers to
Speed Up Map Redraws on page 108.

Avoiding Unnecessary Window Redraws
Whenever your application alters a Map window (or alters an object in the window), MapInfo
Professional redraws the window. If your application makes several alterations, the Map window will
redraw several times, which can annoy your users.

There are two ways to suppress unnecessary window redraws:

• To suppress unnecessary redrawing of one Map window, use the Set Map…Redraw Off
statement. Then issue all statements that affect the Map window. When you are finished
updating the map, issue a Set Map…Redraw On statement to allow the window to redraw. The
window will redraw once, showing all changes you made.

• To suppress unnecessary redrawing of all MapInfo Professional windows, use the Set Event
Processing Off statement. When you are finished updating various windows, issue a Set Event
Processing On statement, and the screen will redraw once.

Purging the Message Window
The Print statement prints text to the Message window.

Printing large amounts of text to the Message window can dramatically slow down
subsequent Print statements.
124 MapBasic 11.5

Chapter 6: Creating the User Interface
Performance Tips for the User Interface
If your program prints large amounts of text to the message window, you should periodically clear
the Message window by issuing a Print Chr$(12) statement.

Suppressing Progress Bar Dialog Boxes
If your application minimizes MapInfo Professional, you should suppress progress bars by using the
Set ProgressBars Off statement.

When a progress bar displays while MapInfo Professional is minimized, the progress bar is frozen
for as long as it is minimized. If you suppress the display of progress bars, the operation can
proceed, even if MapInfo Professional is minimized.
MapBasic 11.5 125 User Guide

Performance Tips for the User Interface
126 MapBasic 11.5

7

Working With Tables
MapBasic provides you with a full complement of statements and functions for
working with tables. For instance, you can modify the structure of a table using
the Alter Table statement, or locate a row in a table using Fetch. The Import
statement lets you create a MapInfo table from a text file and the Export
statement lets you export a table to a different format.

This chapter introduces you to the MapBasic statements and functions that let
you manage your MapInfo tables. Refer to the MapBasic Reference for more
information about each statement and function.

Topics in this section:

Opening Tables Through MapBasic .128
Creating New Tables .135
Accessing the Cosmetic Layer .140
Accessing Layout Windows .140
Multi-User Editing. .141
Files that Make Up a Table. .145
Raster Image Tables. .145
Working With Metadata .147
Working With Seamless Tables. .150
Accessing DBMS Data .152
Accessing/Updating Remote Databases with Linked Tables. . .154
Performance Tips for Table Manipulation 155

Opening Tables Through MapBasic
Opening Tables Through MapBasic
A table must be open before a MapBasic application can access the table. Use the Open Table
statement to open a table. For example, the following statement opens the World table:

Open Table "C:\mapinfo\data\world"

Notice that the Browse statement identifies the table by its alias (Earth). The table’s alias name
remains in effect for the as long as the table is open. The table has not been permanently renamed.
To permanently rename a table, use the Rename Table statement.

If you include the optional Interactive clause in the Open Table statement, and if the table you
specify cannot be located in the directory that you specify, MapInfo Professional displays a dialog
prompting the user to locate the table. If you omit the Interactive keyword and the table cannot be
located, the Open Table statement generates an error.

Determining Table Names at Runtime
When referring to a table in MapBasic, you can either use a string expression or hard-code the table
name into your program. For example, if the tables States, Pipeline, and Parcels are open when
your program is run, you can specify their names explicitly in your program:

Select * From States
Browse * From Pipeline
i = NumCols(Parcels)

You may or may not want to limit your program to work with specific table names. For example, you
might want to prompt the user to choose a table from a list of open tables. Since you wouldn’t know
the name of the selected table ahead of time, you couldn’t hard-code it into the program.

You can use a string variable to store the name of a table. Assuming that a table called Zoning is
open, you can do the following:

Dim work_table As String
work_table = "Zoning"
Browse * From work_table

Opening Two Tables With The Same Name
MapInfo Professional assigns a non-default table alias if you attempt to open two tables that have
the same alias. For example, if you open the table “C:\data1994\sites”, MapInfo Professional
assigns the table its default alias (“sites”); but if you then attempt to open a different table that has an
identical default alias (for example, “C:\backup\sites”), MapInfo Professional must assign a non-
default alias to the second table, so that the two tables can be differentiated. In this example,
MapInfo Professional might assign the second table an alias such as “sites_2.”

If you include the optional Interactive keyword in the Open Table statement, MapInfo Professional
will display a dialog box to let the user specify the table’s non-default alias. If you omit the
Interactive keyword, MapInfo Professional assigns the alias table name automatically.

As a result of this behavior, you may not be able to make assumptions about the alias name with
which a table was opened.
128 MapBasic 11.5

Chapter 7: Working With Tables
Opening Tables Through MapBasic
However, you can use the TableInfo() function to determine the alias under which a table was
opened, as shown in the following example:

Include "mapbasic.def"
Dim s_filename As String
Open Table "states" Interactive
s_filename = TableInfo(0, TAB_INFO_NAME)
Browse * from s_filename

The function call TableInfo(0, TAB_INFO_NAME) returns the alias name of the most recently
opened table.

Opening Non-Native Files As Tables
You can access “non-native” files (dBASE, Lotus, Excel, or text files) as tables, even though they
are not stored in the MapInfo table format. However, before you access a non-native file through
MapBasic, you must register the file. When you register a file, MapInfo Professional builds a table
(.tab) file to accompany the non-native file. You only need to register each file once. After you have
registered a file, you can treat the file as a table.

The following statement registers a dBASE file:

Register Table "income.dbf" Type DBF

After you have registered a file, the file is considered a table, and you can open it the same way you
would open any MapInfo table, by issuing an Open Table statement.

Open Table "income" Interactive

MapInfo Professional’s ability to query a table is not affected by the table’s source. For example, you
can issue a SQL Select statement to extract data from a table, regardless of whether the table was
based on a spreadsheet or a database file.

However, MapInfo Professional’s ability to modify a table does depend in part on the table’s source.
If a table is based on a .dbf file, MapInfo Professional can modify the table; when you update such a
table in MapInfo Professional, you are actually modifying the original .dbf file. However, MapInfo
Professional cannot modify tables that are based on spreadsheets or ASCII (text) files. If you need
to modify a table, but MapInfo Professional cannot modify the table because it is based on a
spreadsheet or ASCII file, make a copy of the table (using the Commit Table…As statement) and
modify the copy.

Creating A Report File From An Open MapInfo Table

High quality reports of tabular data, processed within MapInfo Professional, can be produced using
the industry standard report writer. from Seagate Crystal Reports. Crystal provides a highly intuitive
environment for developing professional reports. See the Create Report From Table and Open
Report statements in the MapBasic Reference Guide.
MapBasic 11.5 129 User Guide

Reading Row-And-Column Values From a Table
Reading Row-And-Column Values From a Table
MapBasic programs can access specific column values from specific rows in a table, through the
following procedure:

1. Use a Fetch statement to specify which row in the table you want to query. This action sets
which row is current.

2. Use a table-reference expression (for example, tablename.columnname) to access a specific
column in the current row.

For example, the following program reads the contents of the Country column from the first row of
the World table:

Dim s_name As String
Open Table "world" Interactive
Fetch First From world
s_name = world.Country

Every open table has a current-row setting; this setting is known as the row cursor (not to be
confused with the mouse cursor, which is the shape that moves across the screen as you move the
mouse). When you issue a Fetch statement, you position the row cursor on a specific row in the
table. Subsequent table references (for example, world.country) extract data from whichever row is
specified by the cursor.

The Fetch statement provides several different ways of positioning the cursor. You can move the
cursor forward or backward one row at a time, position the cursor on a specific row number, or set
the cursor on the first or last row in the table. To determine whether a Fetch statement has
attempted to read past the end of a table, call the EOT() function. For more information on the
Fetch statement or the EOT() function, see the MapBasic Reference Guide.

The MapBasic language recognizes three different types of expressions that reference specific
column values:

The preceding example used the tablename.columnname syntax (for example, world.country).

Another type of column reference is tablename.col#. In this type of expression, a column is specified
by number, not by name (where col1 represents the first column in the table). Since Country is the
first column in the World table, the assignment statement above could be rewritten as follows:

s_name = world.col1

A third type of column reference takes the form tablename.col(numeric expression). In this type of
reference, the column number is specified as a numeric expression within parentheses. The
preceding assignment statement could be rewritten as follows:

Dim i As Integer
i = 1
s_name = world.col(i)

Column Reference Syntax Example

tablename.columnname world.country
130 MapBasic 11.5

Chapter 7: Working With Tables
Reading Row-And-Column Values From a Table
Using this syntax, you can write a MapBasic program that determines, at runtime, which column to
reference.

The tablename in a table reference is optional in statements in which the table name is already part
of the statement. For instance, in the Browse statement you are required to specify column names
and then the table name. Since the table name is explicitly specified in the statement (in the From
clause), the column references at the beginning of the line do not need to include the tablename.

Select Country, Population/1000000 From World
Browse Country, Col2 From Selection

The Select statement also has a From clause, where you name the table(s) to be queried. Column
names that appear within a Select statement do not need the tablename. prefix if the Select
statement queries a single table. However, if a Select statement’s From clause lists two or more
tables, column references must include the tablename. prefix. For a general introduction to using
the SQL Select statement, see the MapInfo Professional User Guide, or see Select in the MapBasic
Reference Guide.

There are instances in which you must use the COLn or the COL(n) column referencing method. In
the example above, the Select statement identifies two columns; the latter of these columns is
known as a derived column, since its values are derived from an equation
(Population/1000000). The subsequent Browse statement can refer to the derived column only
as col2 or as col(2), because the derived expression Population/1000000 is not a valid
column name.

Alias Data Types as Column References
The preceding examples have used explicit, “hard-coded” column names. For example, the
following statement identifies the Country column and the Population column explicitly:

Select Country, Population/1000000 From World

In some cases, column references cannot be specified explicitly, because your application will not
know the name of the column to query until runtime. For example, if your application lets the user
choose a column from a list of column names, your application will not know until runtime what
column the user chose.

MapBasic provides a variable type, Alias, that you can use to store column expressions that will be
evaluated at runtime. As with String variables, you can assign a text string to an Alias variable.
MapBasic interprets the contents of the Alias variable as a column name whenever an Alias
variable appears in a column-related statement.

tablename.COLn world.COL1

tablename.COL(n) world.COL(i)

Column Reference Syntax Example
MapBasic 11.5 131 User Guide

Reading Row-And-Column Values From a Table
For example:

Dim val_col As Alias
val_col = "Inflat_Rate"
Select * From world Where val_col > 4

MapBasic substitutes the contents of val_col (the alias, Inflat_Rate) into the Select statement
in order to select all the countries having an inflation rate greater than 4 percent.

The maximum length of the alias is 32 characters.

In the example below, the sub-procedure MapIt opens a table, maps it, and selects all records from
a specified column that have a value greater than or equal to a certain value. MapIt uses an Alias
variable to construct column references that will be evaluated at runtime.

Include "mapbasic.def"
Declare Sub Main
Declare Sub MapIt(ByVal filespec As String,

ByVal col_name As String,
ByVal min_value As Float)

Sub Main
Call MapIt("C:\MAPINFOW\MAPS\WORLD.TAB", "population", 15000000)

End Sub
Sub MapIt(ByVal filespec As String,

ByVal col_name As String,
ByVal min_value As Float)

Dim a_name As Alias
a_name = col_name
Open Table filespec
Map From TableInfo(0, TAB_INFO_NAME)
Select * From TableInfo(0, TAB_INFO_NAME)
Where a_name >= min_value

End Sub

In the MapIt procedure, a Select statement specifies an Alias variable (a_name) instead of an
explicit column name. Note that the col_name parameter is not an Alias parameter; this is because
MapBasic does not allow by-value Alias parameters. To work around this limitation, the column
name is passed as a by-value String parameter, and the contents of the String parameter are copied
to a local Alias variable (a_name).

The example above demonstrates how an Alias variable can contain a string representing a column
name (“population”). An Alias variable also can contain a full column reference in the form
tablename.columnname. The following example demonstrates the appropriate syntax:

Dim tab_expr As Alias
Open Table "world"
Fetch First From world
tab_expr = "world.COL1"
Note tab_expr

The preceding Note statement has the same effect as the following statement:
132 MapBasic 11.5

Chapter 7: Working With Tables
Reading Row-And-Column Values From a Table
Note world.COL1

Scope
The syntax tablename.columnname (for example, world.population) is similar to the syntax
used to reference an element of a custom Type. MapBasic tries to interpret any name.name
expression as a reference to an element of a Type variable. If the expression cannot be interpreted
as a type element, MapBasic tries to interpret the expression as a reference to a column in an open
table. If this fails, MapBasic generates a runtime error.

Using the “RowID” Column Name To Refer To Row Numbers
RowID is a a special column name that represents the row numbers of rows in the table. You can
treat RowID as a column, although it isn’t actually stored in the table. Think of RowID as a virtual
column, available for use, but not visible. The first row of a table has a RowID value of one, the
second row has a RowID value of two, and so on.

The following example selects the first row from the World table:

Select * from world Where RowID = 1

The following example uses RowID to Select all of the states with a 1990 population greater than the
median.

Dim median_row As Integer
Select * From states Order By pop_1990 Into bypop
median_row = Int(TableInfo(bypop,TAB_INFO_NROWS)/2)
Select * From bypop Where RowID > median_row

Since the TableInfo() function returns the total number of rows in the virtual table bypop, the
variable median_row contains the record number of the state with the median population. The last
Select statement selects all the states that come after the median in the ordered table bypop.

If you delete a row from a table, the row is not physically deleted until you perform a pack operation.
(Rows that have been deleted appear grayed in a Browse window.) Any deleted row still has a
RowID value. Thus, deleting a row from a table does not affect the RowID values in the table;
however, if you delete a row, save your changes, and then pack the table, the table’s RowID values
do change. To pack a table, choose MapInfo Professional’s Table > Maintenance > Pack Table
command, or issue the MapBasic statement Pack Table.

Using the “Obj” Column Name To Refer To Graphic Objects
The Obj column is a special column name that refers to a table’s graphical objects. Any table that
has graphical objects has an Obj column (although the Obj column does not appear in any Browser
window). If a row does not have an associated graphic object, that row has an empty Obj value.

The following example selects all rows that do not have a graphic object:

Select * From sites Where Not Obj

This is useful, for instance, in situations where you have geocoded a table and not all of the records
matched, and you want to select all of the records that did not match.
MapBasic 11.5 133 User Guide

Reading Row-And-Column Values From a Table
The following example copies a graphical object from a table into an Object variable:

Dim o_var As Object
Fetch First From sites
o_var = sites.obj

For more information about graphical objects, see Graphical Objects.

Finding Map Addresses In Tables
MapInfo Professional users can find addresses in maps by choosing Query > Find. MapBasic
programs can perform similar queries by issuing Find statements and Find Using statements. The
Find Using statement specifies the table to be queried; the Find statement tries to determine the
geographic coordinates of a location name (for example, “23 Main St”). The Find statement also can
locate the intersection of two streets, given a string that includes a double-ampersand (for example,
“Pawling Ave && Spring Ave”).

After issuing a Find statement, call CommandInfo() to determine whether the address was located,
and call CommandInfo() again to determine the location’s geographic coordinates. Unlike MapInfo
Professional’s Query > Find command, the MapBasic Find statement does not automatically re-
center a Map window. If you want to re-center the Map window to show the location, issue a Set
Map statement with a Center clause. Also, the Find statement does not automatically add a symbol
to the map to mark where the address was found. If you want to add a symbol, use the
CreatePoint() function or the Create Point statement. For a code example, see Find in the
MapBasic Reference Guide or online Help.

Geocoding
To perform automatic geocoding:

1. Use the Fetch statement to retrieve an address from a table.

2. Use the Find Using statement and the Find statement to find the address.

3. Call CommandInfo() to determine how successful the Find statement was; call
CommandInfo() again to determine x- and y-coordinates of the found location.

4. Create a point object by calling the CreatePoint() function or the Create Point statement.

5. Use the Update statement to attach the point object to the table.

To perform interactive geocoding, issue the following statement:

Run Menu Command M_TABLE_GEOCODE

If you need to perform high-volume geocoding, you may want to purchase MapMarker, a dedicated
geocoding product that is sold separately. MapMarker geocodes faster than MapInfo Professional
and allows single-pass geocoding across the entire United States. MapBasic applications can
control MapMarker through its programming interface. For more information on MapMarker, contact
Pitney Bowes Software Inc. sales. The phone numbers appear at the beginning of this and other
MapInfo product manuals.
134 MapBasic 11.5

Chapter 7: Working With Tables
Writing Row-And-Column Values to a Table
Performing SQL Select Queries
MapInfo Professional users can perform sophisticated queries by using MapInfo Professional’s
Query > SQL Select dialog box. All of the power of the SQL Select dialog box is available to
MapBasic programmers through MapBasic’s Select statement. You can use the Select statement to
filter, sort, sub-total, or perform relational joins on your tables. For information, see Select in the
MapBasic Reference Guide.

Error Checking for Table and Column References
MapBasic cannot resolve references to tables and columns at compile time. For instance, if your
program references a column called states.pop, the MapBasic compiler cannot verify whether the
states table actually has a column called pop. This means that typographical errors in column
references will not generate errors at compile time. However, if a column reference (such as
states.pop) contains a typographical error, an error will occur when you run the program.

Try the following to minimize the possibility of generating runtime errors. Use the Interactive clause
with the Open Table statement, when appropriate. If the table cannot be located, a dialog box will
prompt the user to locate the table. Don’t assume that the table was opened under its default alias.
After you issue an Open Table statement, call TableInfo(0, TAB_INFO_NAME) to determine
the alias assigned to the table. For more information on opening tables, see Open Table in the
MapBasic Reference Guide.

Writing Row-And-Column Values to a Table
To add new rows to a table, use the Insert statement. To change the values stored in the columns of
existing rows, use the Update statement. Both statements are described in the MapBasic Reference
Guide and online Help.

If you add new rows to a table or modify the existing rows in a table, you must save your changes by
issuing a Commit statement. Alternately, to discard any unsaved edits, issue a RollBack statement.

Creating New Tables
Use the Create Table statement to create a new, empty table. Use the Create Index statement to
add indexes to the table, and use Create Map to make the table mappable.

The following example creates a mappable table with a name, address, city, amount, order date,
and customer ID columns. The name field and the customer ID field are indexed.

Create Table CUST
(Name Char(20),
Address Char(30),
City Char(30),
Amount Decimal(5,2),
OrderDate Date,
MapBasic 11.5 135 User Guide

Creating New Tables
CustID Integer)
File "C:\customer\Cust.tab"

Create Map For CUST CoordSys Earth

Create Index On CUST (CustID)

Create Index On CUST(Name)

You can also create a table by saving an existing table (for example, a selection) as a new table
using the Commit statement, or by importing a table using the Import statement.

Modifying a Table’s Structure
Every table has a structure. The structure refers to issues such as how many columns are in the
table, and which of the columns are indexed. A MapInfo Professional user can alter a table’s
structure by choosing MapInfo Professional’s Table > Maintenance > Table Structure command. A
MapBasic program can alter a table’s structure by issuing statements such as Alter Table and
Create Index.

As a rule, a table’s structure cannot be modified while the table has unsaved edits. If you have
added rows to a table, but you have not saved the table, the table has unsaved edits. If a table has
unsaved edits, you must save the edits (by issuing a Commit statement) or discard the edits (by
issuing a Rollback statement) before modifying the table’s structure.

The Alter Table statement modifies a table’s structure. The following example renames the Address
column to ShipAddress, lengthens the Name column to 25 characters, removes the Amount column,
adds new ZIP Code and Discount columns, and re-orders the columns.

Alter Table CUST (Rename Address ShipAddress,
Modify Name Char(25),
Drop Amount
Add Zipcode Char(10),

Discount Decimal(4,2)
Order Name, Address, City, Zipcode,

OrderDate, CustID, Discount)

You cannot change the structure of tables that are based on spreadsheets or delimited ASCII files,
and you cannot change the structure of the Selection table.

Use the Add Column statement to add a temporary column to a table. The Add Column statement
lets you create a dynamic column that is computed from values in another table. Add Column can
also perform advanced polygon-overlay operations that perform proportional data aggregation,
based on the way one table’s objects overlap another table’s objects. For example, suppose you
have one table of town boundaries and another table that represents a region at risk of flooding.
Some towns fall partly or entirely within the flood-risk area, while other towns are outside the risk
area. The Add Column statement can extract demographic information from the town-boundaries
table, then use that information to calculate statistics within the flood-risk area. For information about
the Add Column statement, see the MapBasic Reference Guide.
136 MapBasic 11.5

Chapter 7: Working With Tables
Creating New Tables
Creating Indexes and Making Tables Mappable
Table indexes help MapInfo Professional to optimize queries. Some operations, like MapInfo
Professional’s Find and Geocode menu items, require an index to the field to be matched against.
For instance, before you can use the Find command to locate a customer in your database by name,
you must index the name column. Select statements execute faster for many queries when you use
columns with indexes. SQL joins create a temporary index if the fields specified in the Where clause
are not indexed. There is no limit to the number of columns that can be indexed. The Obj column is
always indexed.

To create an index in MapBasic, use the Create Index statement. To remove an index, use the
Drop Index statement. MapBasic cannot use indexes created in other packages and MapBasic
cannot index on an expression. An index does not change the order of rows in a Browser window.
To control the order of rows in a Browser, issue a Select statement with an Order By clause, and
browse the selection.

Reading A Table’s Structural Information
The functions TableInfo(), ColumnInfo() and NumTables() let you determine information about
the tables that are currently open.

• TableInfo() returns the number of rows in the table, the number of columns, and whether or not
the table is mappable.

• ColumnInfo() returns information about a column in a table, such as the column’s name, the
column’s data type, and whether the column is indexed.

• NumTables() returns the number of currently open tables (including temporary tables such as
Query1).

The following program determines which tables are open and copies the table names into an array.

Include "mapbasic.def"
Dim i, table_count As Integer
Dim tablenames() As String

’ determine the number of open tables
table_count = NumTables()

’ Resize the array so that it can hold
’ all of the table names.
ReDim tablenames(table_count)

’ Loop through the tables
For i = 1 To table_count

’ read the name of table # i
tablenames(i) = TableInfo(i, TAB_INFO_NAME)

’display the table name in the message window
Print tablenames(i)

Next
MapBasic 11.5 137 User Guide

Creating New Tables
Working With The Selection Table
Selection is a special table name that represents the set of rows that are currently selected. A
MapBasic program (or an end-user) can treat the Selection table like any other table.

For example, you can browse the set of currently-selected rows by issuing the following statement:

Browse * From Selection

When you access the Selection table in this way, MapInfo Professional takes a snapshot of the table
and names the snapshot QueryN, where N is a integer value of one (1) or greater. Like Selection,
QueryN is a temporary table. The SelectionInfo() function lets you determine the table alias
MapInfo Professional will assign to the current Selection table (i.e., to learn whether the current
Selection table will be known as Query1 or as Query2). SelectionInfo() also lets you determine
other information about the Selection, such as the number of selected rows.

Cleaning Up “QueryN” Tables

As you use MapInfo Professional, you may find that you have opened a number of QueryN tables
(Query1, Query2, etc.). For example, if you click on a map object and then browse the selection, the
window’s title may read “Query1 Browser.” Each QueryN is a snapshot of a former selection.

MapBasic programs can cause QueryN tables to be opened as well. For example, making a
reference to a column expression such as Selection.Obj causes MapInfo Professional to open a
QueryN table. If you want your MapBasic program to close any QueryN tables that it opens, do the
following:

• When you use Select statements, include the optional Into clause. Then, instead of accessing
the table name “Selection” access the table name that you specified in the Into clause. If you use
the Into clause, MapInfo Professional will not open QueryN tables when you access the query
results. When you are done working with the query results table, close it by using a Close Table
statement.

• If the user makes a selection (for example, by clicking on a map object), and then your program
works with the selection, MapInfo Professional will open a QueryN table. The following example
shows how to close the QueryN table.

’ Note how many tables are currently open.
i_open = NumTables()

’ Access the Selection table as necessary. For example:
Fetch First From Selection
obj_copy = Selection.obj

’If we just generated a QueryN table, close it now.
If NumTables() > i_open Then

Close Table TableInfo(0, TAB_INFO_NAME)
End If
138 MapBasic 11.5

Chapter 7: Working With Tables
Creating New Tables
Changing the Selection
Use the Select statement to change which rows are selected. The Select statement is a very
powerful, versatile statement. You can use the Select statement to filter, sort, or sub-total your data,
or to establish a relational join between two or more tables. All of the power of MapInfo
Professional’s Query > SQL Select command is available to MapBasic programmers through the
Select statement.

If you issue a Select statement, and if you do not want the results table to have a name such as
Query1, you can assign another name to the results table. The Select statement has an optional
Into clause that lets you specify the name of the results table. For example, the following statement
makes a selection and names the results table “Active.”

Select * From sites
Where growth > 15
Into Active

For an introduction to the capabilities of SQL Select queries, see the MapInfo Professional User
Guide. For detailed information about the Select statement, see the MapBasic Reference Guide.

Updating the Currently-Selected Rows
You can use the Update statement to modify the Selection table. If you modify the Selection table,
the changes that you make are applied to the base table on which the selection is based.

For example, the following Select statement selects some of the rows from the employees table.
After the Select statement, an Update statement modifies the data values of the selected rows.

Select * from employees
Where department = "marketing" and salary < 20000

Update Selection
Set salary = salary * 1.15

The Update statement will alter the values of rows in the employees table, because the selection is
based on the employees table.

Using the Selection for User Input
The Selection process is part of the user interface. Some applications are arranged so that the user
selects one or more rows, then chooses an appropriate menu item. When the user makes a
selection, the user is specifying an object (a noun). When the user chooses a menu item, the user is
specifying an action (a verb) to apply to that object.

The sample program, TextBox, is based on this noun/verb model. The user selects one or more text
objects, then chooses the Tools > TextBox > Create Text Boxes command. The TextBox
application then queries the Selection table, and draws boxes around the text objects that the user
selected.
MapBasic 11.5 139 User Guide

Accessing the Cosmetic Layer
To query the current selection, use the SelectionInfo() function. By calling SelectionInfo(), you
can determine how many rows are selected (if any) at the present time. If rows are currently
selected, you can call SelectionInfo() to determine the name of the table from which rows were
selected. You then can call TableInfo() to query additional information about the table.

If your application includes a sub-procedure called SelChangedHandler, MapInfo Professional calls
that procedure every time the selection changes. For example, you may want some of your
application’s custom menu items to only be enabled when rows are selected. To perform that type of
selection-specific menu maintenance, create a SelChangedHandler procedure. Within the
procedure, call SelectionInfo(SEL_INFO_NROWS) to determine if any rows are selected. Based
on whether any rows are selected, issue an Alter Menu Item statement that enables or disables
appropriate menu items. For more information on menu maintenance, see Creating the User
Interface.

Accessing the Cosmetic Layer
Each Map window has one Cosmetic layer, a special-purpose layer which is the top layer in the
map. If the user performs a Find operation, MapInfo Professional places a symbol at the “found”
location. Such symbols are stored in the Cosmetic layer. in See Graphical Objects for more
information on labeling.

To control the Cosmetic layer through MapBasic, issue table-manipulation statements (such as
Select, Insert, Update, or Delete) and specify a table name such as CosmeticN (where N is an
Integer, one or larger). For example, the table name Cosmetic1 corresponds to the Cosmetic layer
of the first Map window on the screen. The following statement selects all objects in that Map
window’s Cosmetic layer:

Select * From Cosmetic1

To determine a Cosmetic layer’s exact table name, call WindowInfo() with the code
WIN_INFO_TABLE. For example, the following statement deletes all objects from the Cosmetic
layer of the active map window (assuming that the active window is a Map window):

Delete From WindowInfo(FrontWindow(), WIN_INFO_TABLE)

Accessing Layout Windows
MapBasic’s object-manipulation statements can be applied to the objects on a Layout window. To
manipulate a Layout window, issue statements that use the table name LayoutN (where N is an
integer, one or larger).

For example, the table name Layout1 corresponds to the first Layout window that you open. The
following statement selects all objects from that Layout window:

Select * From Layout1
140 MapBasic 11.5

Chapter 7: Working With Tables
Multi-User Editing
You can determine a Layout window’s exact table name by calling the WindowInfo() function with
the WIN_INFO_TABLE code.

Objects stored on a Layout window use a special coordinate system, which uses “paper”
units (units measured from the upper-left corner of the page layout). Any MapBasic program
that creates or queries object coordinates from Layout objects must first issue a Set
CoordSys statement that specifies the Layout coordinate system.

For example, the TextBox sample program draws boxes (rectangle objects) around any currently-
selected text objects, regardless of whether the selected text objects are on a Map window or a
Layout window. If the selected objects are Layout objects, TextBox issues a Set CoordSys Layout
statement.

When you are using MapInfo Professional interactively, MapInfo Professional’s Statistics Window
gives you an easy way of determining the table name that corresponds to a Layout window or to a
Map window’s Cosmetic layer. If you select an object in a Map’s Cosmetic layer, and then show the
Statistics Window (for example, by choosing Options > Show Statistics Window), the Statistics
window displays a message such as, “Table Cosmetic1 has 1 record selected.” Similarly, if you
select an object from a Layout window, the Statistics window displays, “Table Layout1 has 1 record
selected.”

Multi-User Editing
If your MapBasic program works with tables in a multiple-user environment, you may encounter file-
sharing conflicts. Sharing conflicts occur because MapInfo Professional only allows one user to
modify a table at a time.

This section spells out the rules that govern MapInfo Professional’s multi-user editing behavior.
Read this section if you want to write a MapBasic program that allows multiple users to modify the
same table at the same time.

The Rules of Multi-User Editing
MapInfo Professional’s multi-user table editing has three restrictions:

Rule 1

A table may only be edited by one user at a time.

Imagine two hypothetical users: User A and User B. Both users are attempting to use the same
table, which is stored on a network.

User A begins editing the table. (For example, User A adds new rows to the table.) Moments later,
User B attempts to edit the same table. MapInfo Professional prevents User B from editing the table,
and displays the message, “Cannot perform edit. Someone else is currently editing this table.” If
User B is trying to edit the table through a MapBasic application, a runtime error occurs in the
application.
MapBasic 11.5 141 User Guide

Multi-User Editing
As long as User A continues to edit the table, MapInfo Professional prevents User B from editing the
same table. This condition remains until User A performs Save, Revert (discarding the edits), or
Close Table.

User B is allowed to read from the table that User A is editing. For example, User B can
display the table in a Map window. However, User B will not “see” the edits made by User A
until User A performs a Save.

Rule 2

Users cannot read from a table while it is being saved.

After editing the table, User A chooses the File > Save Table command. Then, while the Save
operation is still underway, User B attempts to read data from the table. As long as the Save is
underway, MapInfo Professional prevents User B from accessing the table at all. MapInfo
Professional displays a dialog box (on User B’s computer) with the message, “Cannot access file
<tablename>.DAT for read.” The dialog box contains Retry and Cancel buttons, with the following
meaning:

Retry

If User B clicks Retry, MapInfo Professional repeats the attempt to read from the file. The Retry
attempt will fail if the Save is still underway. The user can click the Retry button repeatedly. After the
Save operation finishes, clicking the Retry button succeeds.

Cancel

If User B clicks Cancel, MapInfo Professional cancels the operation, and the Retry/Cancel dialog
box disappears.

If User B was loading a workspace when the sharing error occurred, clicking Cancel may halt
the loading of the rest of the workspace. For example, a workspace contains Open Table
statements. If the Open Table statement was the statement that caused the sharing conflict,
and if the user cancels the Retry/Cancel dialog box, MapInfo Professional will not open the
table. Subsequent statements in the workspace may fail because the table was not opened.

Rule 3

A Save cannot be started while the table is being read by other users.

If other users are reading the table at the exact moment that User A chooses File > Save Table, the
Save Table command cannot proceed. MapInfo Professional displays the message, “Cannot open
file <tablename>.DAT for writing.” The dialog box contains Retry and Cancel buttons, with the
following meaning:
142 MapBasic 11.5

Chapter 7: Working With Tables
Multi-User Editing
Retry

If User A clicks Retry, MapInfo Professional repeats the attempt to save the table. The user can click
the Retry button repeatedly. Clicking the Retry button will only succeed if the other users have
finished reading from the table.

Cancel

If User A clicks Cancel, MapInfo Professional cancels the Save operation, and the Retry/Cancel
dialog box disappears. At this point, the table has not been saved, and the edits will not be saved
unless User A chooses File > Save Table again.

How to Prevent Conflicts When Reading Shared Data

As discussed in the previous section, some sharing conflicts display a Retry/Cancel dialog box.
Ordinarily, the Retry/Cancel dialog box appears at the moment a sharing conflict occurs. However, a
MapBasic program can suppress the dialog box by using the Set File Timeout statement.

In the parts of your program where you open or read from a shared table, use the Set File Timeout
statement with a value larger than zero. For example, if you have a procedure that opens several
tables, you may want to issue this statement at the start of the procedure:

Set File Timeout 100

The Set File Timeout statement sets a time limit; in this example, the time limit is 100 seconds. In
other words, MapInfo Professional will automatically retry any table operations that produce a
sharing conflict, and MapInfo Professional will continue to retry the operation for up to 100 seconds.
Note that MapInfo Professional retries the table operations instead of displaying a Retry/Cancel
dialog box. If the sharing conflict still occurs after 100 seconds of retries, the automatic retry stops,
and MapInfo Professional displays the Retry/Cancel dialog box.

Preventing Conflicts When Writing Shared Data
Several MapBasic statements alter the contents of a table. For example, the Insert statement adds
new rows to a table. If your program attempts to alter the contents of a table, and a sharing conflict
occurs, a MapBasic runtime error occurs. To trap this error, use the OnError statement. For
example, if you have a procedure that inserts new rows into a table (as in the example below), you
should create an error-handling routine, and place an OnError statement at the top of the procedure
to enable error trapping. (Error-handling is discussed in more detail in Debugging and Trapping
Runtime Errors.)

CAUTION: Use the Set File Timeout statement and the OnError statement exclusively. In
places where an error handler is enabled, the file-timeout value should be zero.
In places where the file-timeout value is non-zero, error handling should be
disabled. The following example demonstrates this logic.

Function MakeNewRow(ByVal new_name As String) As Logical

’turn off automatic retries
Set File Timeout 0

’turn off window redraws
Set Event Processing Off
MapBasic 11.5 143 User Guide

Multi-User Editing
’enable error-trapping
OnError Goto trap_the_error

’Add a new row, and save the new row immediately.
Insert Into Sitelist ("Name") Values (new_name)
Commit Table Sitelist

’Set return value to indicate success.
MakeNewRow = TRUE

exit_ramp:

Set Event Processing On
Exit Function

trap_the_error:
’ The program jumps here if the Insert or Commit
’ statements cause runtime errors (which will happen
’ if another user is already editing the table).

If Ask("Edit failed; try again?", "Yes", "No") Then
’ ... then the user wants to try again.
Resume 0

Else
’ the user does not want to retry the operation.
’ If the Insert succeeded, and we’re getting an error
’ during Commit, we should discard our edits.
Rollback Table Sitelist

’ set function’s return value to indicate failure:
MakeNewRow = FALSE
Resume exit_ramp

End If
End Function

Note the following points:

• When you modify a shared table, try to minimize the amount of time that the table has unsaved
edits. In the example above, the Commit statement follows immediately after the Insert
statement, so that there is very little time during which the table has unsaved edits.

• The example uses Set Event Processing Off to suspend event processing; as a result, MapInfo
Professional will not redraw any windows during the edit. If we did not suspend event
processing, the Insert statement might cause MapInfo Professional to redraw one or more
windows, and the window redraw could conceivably trigger a sharing conflict (for example,
because other tables in the same Map window may have a sharing conflict).

• This function sets file-timeout to zero. The procedure that calls this function may need to reset
file-timeout to its previous value.
144 MapBasic 11.5

Chapter 7: Working With Tables
Files that Make Up a Table
Opening a Table for Writing
When you open a table in a multiple-user environment, there is a chance that MapInfo Professional
will open the table with read-only access, even if the files that comprise the table are not read-only. If
a MapBasic program issues an Open Table statement at the exact moment that the table is being
accessed by another user, MapInfo Professional may open the table with a read-only status. The
read-only status prevents successive statements from modifying the table.

The following example shows how to prevent MapInfo Professional from opening shared tables with
a read-only status. Instead of simply issuing an Open Table statement, issue the statement within a
loop that iterates until the file is opened read/write.

Retry_point:

Open Table "G:\MapInfo\World"
If TableInfo("World", TAB_INFO_READONLY) Then

Close Table World
Goto Retry_point

End If

Files that Make Up a Table
A table consists of several files: one file contains information about the table structure (column
names, etc.); another file contains the table’s row-and-column values; another file contains the
table’s graphic objects (if any); and the remaining files contain indexes. The file containing the row-
and-column data can be in any format supported by MapInfo Professional: .dbf, Lotus .wks or .wk1
format, delimited ASCII file format, or Excel (.XLS or .XLSX) file format.

• filename.tab: Describes the structure of your table.
• filename.dat or filename.dbf or filename.wks: Contains tabular (row-and-column) data.
• filename.map: Contains the table’s graphic objects.
• filename.id: Contains a geographic index.
• filename.ind: Contains indexes for columns in the table.

Because each table consists of several component files, you must be very careful when renaming a
table. To rename a table, choose MapInfo Professional’s Table > Maintenance > Rename Table
command, or issue the MapBasic Rename Table statement.

Raster Image Tables
Raster image tables (tables that display only raster image data, not vector data) do not have all of
the component files listed above, because raster image tables do not contain tabular data. Every
raster image table consists of at least two files: a .tab file (which stores the image’s control points)
and the file or files that store the raster image. For example, if a raster image table is based on the
file photo.tif, the table might consist of two files: photo.tif and photo.tab.
MapBasic 11.5 145 User Guide

Raster Image Tables
In many ways, a raster image table is just like any other table. To open a raster image table, use an
Open Table statement. To display a raster image table in a Map window, issue a Map statement. To
add a raster image table to an existing map, issue an Add Map Layer statement. However, you
cannot perform a Select operation on a raster image table. To determine if a table is a raster table,
call TableInfo() with the TAB_INFO_TYPE code. If the table is a raster table, TableInfo() returns
the code TAB_TYPE_IMAGE. As a rule, MapInfo Professional does not alter the original image file
on which a raster table is based. Therefore:

• If you use the Drop Table statement to delete a raster table, MapInfo Professional deletes the
table file, but does not delete the image file on which the table is based.

• If you use the Rename Table statement on a raster table, MapInfo Professional renames the
table file, but does not rename the image file on which the table is based.

• If you use the Commit statement to copy a raster table, MapInfo Professional copies the table
file but does not copy the image file on which the table is based.

A raster image table’s .tab file is created when a user completes MapInfo Professional’s Image
Registration dialog box. If you need to create a .tab file for a raster image through a MapBasic
program, create the file using standard file input/output statements: create the file using the Open
File statement, and write text to the file using the Print # statement; see example below.

The following program creates a table file to accompany a raster image file. This program assigns
“dummy” coordinates, not true geographic coordinates. Therefore, the final table will not be suitable
for overlaying vector map layers. However, if the raster image is a non-map image (as a company
logo), the use of non-geographic coordinates is not a problem.

Include "mapbasic.def"
Declare Sub Main
Declare Function register_nonmap_image(ByVal filename As String,

ByVal tablename As String) As Logical

Sub Main
Dim fname, tname As String
fname = "c:\data\raster\photo.gif" ’name of an existing image
tname = PathToDirectory$(fname)

+ PathToTableName$(fname) + ".tab" ’name of table to create
If FileExists(tname) Then

Note "The image file is already registered; stopping."
Else

If register_nonmap_image(fname, tname) Then
Note "Table file created for the image file: "
+ fname + "."
Else

Note "Could not create table file."
End If

End If
End Sub
Function register_nonmap_image(ByVal filename As String,

ByVal tablename As String) As Logical
register_nonmap_image = FALSE
OnError GoTo handler
Open File tablename For Output As #1 FileType "MIta"
Print #1, "!Table"
Print #1, "!Version 300"
146 MapBasic 11.5

Chapter 7: Working With Tables
Working With Metadata
Print #1, "!charset Neutral"
Print #1
Print #1, "Definition Table"
Print #1, " File """ + filename + """"
Print #1, " Type ""RASTER"" "
Print #1, " (1,1) (1,1) Label ""Pt 1"", "
Print #1, " (5,1) (5,1) Label ""Pt 2"", "
Print #1, " (5,5) (5,5) Label ""Pt 3"" "
Print #1, " CoordSys NonEarth Units ""mm"" "
Print #1, " Units ""mm"" "
Print #1, " RasterStyle 1 45" ’ Brightness; default is 50
Print #1, " RasterStyle 2 60" ’ Contrast; default is 50
Close File #1
register_nonmap_image = TRUE ’ set function return value

last_exit:
Exit Function

handler:
Close File #1
Resume last_exit

End Function

Working With Metadata

What is Metadata?
Metadata is data that is stored in a table’s .TAB file, instead of being stored as rows and columns.
For example, if you want to record summary information about who edited a table or when they
performed the edits, you could store that information as metadata.

Metadata is not displayed in the standard MapInfo Professional user interface. Users cannot see a
table’s metadata (unless they display the .TAB file in a text editor or run the TableMgr sample MBX).
However, MapBasic applications can read and write metadata values.

Each table can have zero or more metadata keys. Each key represents an information category,
such as an author’s name, a copyright notice, etc. For example, a key named “\Copyright” might
have the value “Copyright 2005 Acme Corp.”

What Do Metadata Keys Look Like?
Each metadata key has a name, which always starts with the “\” (backslash) character. The key
name never ends with a backslash character. Key names are not case-sensitive.

The key’s value is always a string, up to 239 characters long.

The following table provides samples of metadata keys and key values.
MapBasic 11.5 147 User Guide

Working With Metadata
Note the following points:

• Spaces are allowed within key names and within key values.
• You can define a hierarchy of keys by using key names that have two or more backslash

characters. In the table above, several of the keys belong to a hierarchy that starts with the
“\Info” key. Arranging keys in hierarchies allows you to work with an entire hierarchy at a time (for
example, you can delete an entire hierarchy with a single statement).

• “\IsReadOnly” is a special key, reserved for internal use by MapInfo Professional. When you add
metadata to a table, MapInfo Professional automatically creates the \IsReadOnly key. Do not
attempt to modify the \IsReadOnly key.

• The table above shows each string within quotation marks to emphasize that they are string
values. However, when you retrieve keys from a table, the strings retrieved by MapBasic do not
actually include quotation marks.

Examples of Working With Metadata
The GetMetadata$() function allows you to query a table’s metadata, but only if you already know
the exact name of the metadata key. If you know that a table has a key called “\Copyright” then the
following function call returns the value of that key:

s_variable = GetMetadata$(table_name, "\Copyright")

The Metadata statement allows you to create, modify, or query a table’s metadata, even if you do
not know the names of the keys. The following examples demonstrate the various actions that you
can perform using the Metadata statement.

In the following examples, table_name represents a string variable that contains the name of
an open table.

The following example stores a key value in a table. If the key already exists, this action changes the
key’s value; if the key does not already exist, this action adds the key to the table’s metadata.

Metadata Table table_name
SetKey "\Info\Author" To "Laura Smith"

The following statement deletes the “\Info\Author” key from the table.

Sample Key Name Sample Key Value

"\Copyright Notice" Copyright 2008 Pitney Bowes Mapinfo Corp."

"Info" "Tax Parcels Map"

"Info Author" "Meghan Marie"

"Info\Date\Start" "12/14/01"

"Info\Date\End" "12/31/01"

"IsReadOnly" "FALSE"
148 MapBasic 11.5

Chapter 7: Working With Tables
Working With Metadata
Metadata Table table_name
Dropkey "\Info\Author"

The following statement deletes an entire hierarchy of keys at one time. All keys whose names start
with “\Info\” will be deleted.

Metadata Table table_name
Dropkey "\Info" Hierarchical

When you use the Metadata statement to write or delete metadata, the changes take effect
immediately. You do not need to perform a Save operation.

You also can use the Metadata statement to read the metadata from a table, even if you do not know
the names of the keys. To read a table’s metadata:

1. Issue a Metadata Table…SetTraverse statement to initialize a traversal.

2. Issue a Metadata Traverse…Next statement to retrieve a key. This statement retrieves the
key’s name into one string variable, and retrieves the key’s value into another string variable.

3. Continue to issue Metadata Traverse…Next statements to retrieve additional keys. Typically,
this statement is issued from within a loop. Once you have exhausted the keys, Metadata
Traverse…Next returns an empty string as the key name.

4. Terminate the traversal by issuing a Metadata Traverse…Destroy statement. This action
releases the memory used by the traversal.

The following example shows how to traverse a table’s metadata.

Sub Print_Metadata(ByVal table_name As String)

Dim i_traversal As Integer
Dim s_keyname, s_keyvalue As String

’ Initialize the traversal. Specify "\" as the
’ starting key, so that the traversal will start
’ with the very first key.
Metadata Table table_name

SetTraverse "\" Hierarchical Into ID i_traversal
’ Attempt to fetch the first key:
Metadata Traverse i_traversal

Next Into Key s_keyname Into Value s_keyvalue

’ Now loop for as long as there are key values;
’ with each iteration of the loop, retrieve
’ one key, and print it to the Message window.
Do While s_keyname <> ""

Print " "
Print "Key name: " & s_keyname
Print "Key value: " & s_keyvalue

Metadata Traverse i_traversal
Next Into Key s_keyname Into Value s_keyvalue

Loop
MapBasic 11.5 149 User Guide

Working With Seamless Tables
’ Release this traversal to free memory:
MetaData Traverse i_traversal Destroy

End Sub

For a complete listing of the syntax of the Metadata statement, see the MapBasic Reference Guide
or online Help.

Working With Seamless Tables

What is a Seamless Table?
Seamless tables allow you to group multiple tables together and treat them as a single table. Once
you have grouped your tables into a seamless table, you can add the entire group of tables to a Map
window very easily, simply by adding the seamless table (in the Layer Control window). For an
introduction to working with seamless tables, see the MapInfo Professional User Guide.

How Do Seamless Tables Work?
MapInfo Professional includes a MapBasic program, Seamless Manager (seammgr.mbx), that
allows you to create and manipulate seamless tables. To see how a seamless table is composed,
you need to turn the table’s “seamless behavior” off, as follows:

1. Open a seamless table, such as USRaster.

2. Run the Seamless Manager application.

3. Choose Tools > Seamless Manager > Turn Seamless Off to turn off the seamless attribute for
the DCMetroA table.

4. Choose Window > New Browser Window to display the table in a Browser window.

Like ordinary tables, a seamless table has rows and columns. Each row corresponds to a base table
that is included in the seamless table.
150 MapBasic 11.5

Chapter 7: Working With Tables
Working With Seamless Tables
The first column in a seamless table contains table names. The second column contains
descriptions, which appear in the user interface. The table names in the first column may contain
directory paths. You can omit the directory paths if the base tables are in the same directory as the
seamless table, or if the base tables can be located by the Search Directories path (which is
specified as a Preference, in the Directory Preferences dialog box).

Every row in a seamless table has a map object attached to it, just as objects are attached to rows in
conventional tables. However, the objects in a seamless table are not intended for display. Each row
in a seamless table has a rectangle object, which defines the minimum bounding rectangle (MBR)
for the table named in the first column. When a user displays a seamless table in a Map window,
MapInfo Professional compares the Map window’s current extents against the MBRs stored in the
table. MapInfo Professional only opens the base tables when necessary (i.e., when the area
currently visible in the Map window intersects the table’s MBR).

MapBasic Syntax for Seamless Tables
Use the Set Table statement to turn a seamless table into a conventional table. For example, if you
want to edit the descriptions in a seamless table, you could issue the following statement:

Set Table USRaster Seamless Off

and then edit the table’s descriptions in a Browser window.

Call TableInfo(, TAB_INFO_SEAMLESS) to determine whether a table is a seamless table.

Call GetSeamlessSheet() to display a dialog box that prompts the user to choose one base table
from a seamless table.

Limitations of Seamless Tables
All of the base tables in a seamless table must have the same structure (i.e., the same number of
columns, the same column names, etc.).

Note that some MapInfo Professional operations cannot be used on seamless tables. For example:

… appear in this list if the user browses
the seamless table.

Descriptions from the second column…
MapBasic 11.5 151 User Guide

Accessing DBMS Data
• You cannot simultaneously select objects from more than one base table in a seamless table.
• The MapBasic Find statement cannot search an entire seamless table; the Find statement can

only work with one base table at a time.
• You cannot make a seamless table editable in a Map window.
• You cannot create a thematic map for a seamless table.

Accessing DBMS Data
The preceding discussions showed you how to work with local MapInfo tables, tables on your hard
disk, or perhaps on a network file-server. This section describes how MapBasic can access DBMS
tables, such as Oracle or SQL Server databases.

MapBasic’s remote-data statements and functions all begin with the keyword Server, with the
exception of the Unlink statement. For details on the syntax, see the MapBasic Reference Guide or
online Help.

How Remote Data Commands Communicate with a Database
MapInfo Professional allows a MapBasic application to connect to multiple databases at one time
and issue multiple intermixed SQL statements. This is done through connection handles and
statement handles.

Connection handles (or numbers) identify information about a particular connection. MapBasic
defines connection handles as variables of type integer (i.e., a connection number). An application
receives a connection handle upon connecting to a data source. The connection handle is used to
associate subsequent statements with a particular connection.

Statement handles (or numbers) identify information about an SQL statement. MapBasic defines
statement handles as variables of type integer (i.e., a statement number). An application must
receive a statement handle upon calling the Server_Execute() function to submit an SQL request.
The statement handle is used to associate subsequent SQL requests, like the Fetch and Close
operations, to a particular Select statement.

Connecting and Disconnecting
Before a MapBasic application can begin executing SQL statements to remote databases, it must
request a connection using the Server_Connect function. Once a successful connection is
established, the function returns a connection handle (hdbc) for use with subsequent SQL DataLink
calls.

Dim hdbc As Integer
hdbc = Server_Connect("ODBC", "DLG=1")

When the driver performs a commit or rollback, it resets all statement requests associated with that
connection. The Driver Manager handles the work associated with switching connections while
transactions are in progress on the current connection.

Use the following statement to disconnect:

Server hdbc Disconnect
152 MapBasic 11.5

Chapter 7: Working With Tables
Accessing DBMS Data
This statement closes the connection and frees all resources associated with it.

The following chart describes the sequence in which SQL MapBasic Server statements can be
issued. There are some statements that require no connection information (for example,
Server_NumDrivers()), some that require only a connection handle (for example, Server
Commit), and some that require a statement handle (for example, Server Fetch).

You can download an entire table, some rows and columns, or a result set from an ODBC data
source using the Into feature of the MapBasic statement Server Fetch. However, any updates
applied to the downloaded table are not applied back to the server database table. Updating remote
databases is accomplished by the Save File statement.
MapBasic 11.5 153 User Guide

Accessing/Updating Remote Databases with Linked Tables
PostGIS Geometry Conversion Behavior
If you try to save a map with unsupported spatial geometry types in PostGIS, these are the results:

• Spatial Geometry Types with All Unsupported Objects: If you have created a map that might
contain all of the unsupported objects and you are trying to save to PostGIS, this message
displays:

Table has unsupported objects (rounded rectangles, ellipses or
arcs). Convert to regions and/or polylines?

Click Yes to convert the unsupported objects to regions or polylines; you would select No to
decline to convert the unsupported objects. If you decline, you cannot save the map you have
created to the PostGIS database.

• Spatial Geometry types with Region Objects Only: If you have created a map that contains
region objects only and you are trying to save to PostGIS, this message displays:

Table has unsupported objects (rounded rectangles or ellipses).
Convert to regions?

Click Yes to convert the unsupported objects to regions; you would select No to decline to
convert the unsupported objects. If you decline, you cannot save the map you have created to
the PostGIS database.

• For Spatial Geometry types with Line Objects Only: If you have created a map that contains
line objects only and you are trying to save to PostGIS, this message displays:

Arc is an unsupported object. Convert to polylines?

Click Yes to convert the unsupported objects to polylines; you would select No to decline to
convert the unsupported objects. If you decline, you cannot save the map you have created to
the SQL Server Spatial database.

• For Spatial Geometry of type Rectangle: If you have created a map that contains rectangle
objects and you are trying to save to PostGIS, this message displays:

Cannot upload Object - Rectangle object type is not supported in this
table. Operation canceled.

Click OK. You cannot save the map you have created to the PostGIS database.

Accessing/Updating Remote Databases with Linked Tables
A linked table is a special kind of MapInfo table that retains links to a remote database. Edits can be
made over multiple MapInfo Professional sessions. Because the linked table updates are occurring
outside of an RDBMS transaction, other RDBMS users can update the same rows in the same
tables. An optimistic concurrency control mechanism is used to prevent data corruption.
Concurrency control is accomplished with the Automatic/Interactive clause of the Commit Table
statement. When the data is saved, a connection with the remote database is re-established, editing
conflicts are resolved, and the changed data is written to the RDBMS. A linked table is created with
the MapBasic statement Server Link Table.

Linked tables contain information to re-establish connections and identify the remote data to be
updated. This information is stored as metadata in the tab file.

An unedited linked table can be refreshed with current data from the remote database without
respecifying the connection data, query, and table. A linked table is refreshed with the MapBasic
statement Server Refresh.
154 MapBasic 11.5

Chapter 7: Working With Tables
Performance Tips for Table Manipulation
A linked table can be unlinked with the MapBasic statement Unlink. Unlinking a table removes the
link to the remote database. The end product is a normal MapInfo base table.

Using MapInfo Professional’s spatial indexing, users will be able to store and retrieve points in any
database; or spatial objects in supported spatial objects. See Making a Remote Table Mappable.

Live Access to Remote Databases
You can access data live from remote databases with the Register Table statement. When you
specify the Type as ODBC, the Register Table statement tells MapInfo Professional to examine the
ODBC table and build a corresponding table file (filename.TAB).

Performance Tips for Table Manipulation

Set the Default View for Remote Tables
Set the default view for a remote database table, so that only the data you are interested in opens in
a map or browser. This improves data access speed for large tables.

The default view is stored in the MAPINFO_MAPCATALOG in four columns that hold the bounds:
VIEW_X_LL, VIEW_Y_LL, VIEW_X_UR AND VIEW_Y_UR. The MapCatalog is a registry table that
contains metadata about remote tables. If there is no entry in the MapCatalog for the table,
MapBasic retrieves the entire bounds.

To set the new default view, open the remote table (the entire bounds will display), adjust the view
as desired and run the MapBasic tool Window Manager to call Set Default View. The new bounds
will be updated in the MapCatalog and used the next time the table is opened.

When using the Save Copy As command to upload a table to a remote database data source, the
default view for the original table is also used by the newly created table.

If the remote table has no default view entry in the MAPINFO_MAPCATALOG, the remote database
user (as identified in the database connection) must have ALTER permission to the MapCatalog in
order to change the default view from the original setting. Without this permission, a warning
message displays and the default view change fails.

Minimize Transaction-File Processing
Ordinarily, when a user edits a MapInfo table, MapInfo Professional stores the edits in a temporary
file known as a transaction file. As the user performs more and more edits, the transaction file grows
larger. A large transaction file can slow down some operations, therefore, if your MapBasic program
performs table editing, you may want to take one of the following steps to prevent the transaction file
from growing too large:

• Save your edits (i.e., perform a Commit statement) regularly. For example, you might set up
your program so that it performs a commit after every 100 edits. Saving your edits empties out
the transaction file.
MapBasic 11.5 155 User Guide

Performance Tips for Table Manipulation
• Use a Set Table…FastEdit statement to turn on FastEdit mode. In FastEdit mode, edits are
saved immediately to a table, instead of being stored in a transaction file. For details, see the
MapBasic Reference Guide or online Help. See also Set Table…Undo Off.

Use Indices Where Appropriate
Some queries are faster if you index one or more columns in your table. For example, Select
statements can be faster if you index the columns used in Where, Order By, or Group By clauses.
However, you may not want to index every single column in your table. Indexing every column can
slow down some operations because MapInfo Professional must spend more time maintaining
indices.

If your application performs intensive table manipulation that does not involve queries, you may be
able to improve speed by doing the following:

1. Delete the indices from your table (using the Drop Index statement).

2. Perform table edits as necessary.

3. Save your edits.

4. Use the Create Index statement to re-create the indices.

This strategy can speed up heavy-duty table manipulation, because MapInfo Professional no longer
needs to maintain indices during the editing operations.

Using Sub-Selects
The Select statement can include a Where clause that performs a sub-select, as described in the
MapBasic Reference Guide. However, you may find it faster to perform two non-nested Select
statements, instead of one nested Select…Where (Select …) statement.

If you perform a sub-select of this type:

... Where x = Any(Select ...) ...

then MapInfo Professional does optimize the query performance, but only if column x is indexed.

Optimized Select Statements
Some types of Select queries are optimized for fast performance. See Select in the MapBasic
Reference Guide or online Help.

Using Update Statements
MapBasic allows you to update map objects one at a time, by performing an Alter Object statement
and then an Update statement on individual rows, often within a loop. However, this type of table
manipulation can be very slow, because you are issuing several statements for every row that you
modify.
156 MapBasic 11.5

Chapter 7: Working With Tables
Performance Tips for Table Manipulation
In some cases, you can obtain much faster performance by issuing a single Update statement that
affects an entire table, rather than updating one row at a time. For an example, see the topic
“Updating Symbols Quickly” in the MapBasic online Help.
MapBasic 11.5 157 User Guide

Performance Tips for Table Manipulation
158 MapBasic 11.5

8

File Input/Output
In MapBasic, there is an important distinction between managing files and
managing MapInfo tables. The preceding chapter describes how MapBasic lets
you manage tables. This chapter describes how you manage files that are not
tables.

Topics in this section:

Overview of File Input/Output .160
Sequential File I/O .161
Platform-Specific & International Character Sets163

Overview of File Input/Output
Overview of File Input/Output
File input/output (usually abbreviated file i/o) is a process of reading information from files (input)
and/or writing information to files (output). The MapBasic language provides a set of standard
BASIC input/output statements and functions to let you read and/or write text or binary files.
Furthermore, because MapInfo Professional and MapBasic are designed to accommodate different
hardware platforms, MapBasic’s file i/o statements provide mechanisms that let you ensure
seamless sharing of data.

There are three different types of file access: sequential, random, and binary. Which mode you
should use depends on the nature of the data in the file(s) you need to access. The three modes are
summarized below:

• Use sequential file i/o to read text from variable-length text files. For example, if one line of a
text file is fifty characters long, and subsequent lines in the text file are longer or shorter than fifty
characters, then the file is variable-length. Use sequential file i/o for accessing such files.

• Use random file i/o to read from text files that are fixed-length. If every line in a file is exactly 80
characters long, the file is fixed-length, and you can access the file using random file i/o.

• Use binary file i/o to access binary (non-text) file data. If you use binary file i/o to store data in a
file, MapInfo Professional stores numeric data in an efficient storage format. Binary files
containing numerical data cannot be viewed or edited in a text editor, however, they provide a
more efficient format for storing numerical data than text files.

Regardless of which type of file i/o you will perform, the first step to performing file i/o is to open the
file you want to use. In MapBasic, you open a file using the Open File statement. This statement has
several optional clauses; which clauses you need to use depends on your specific situation. The
following statement opens a text file for sequential input:

Open File "settings.txt" For Input As #1

When you open a file, you specify a file number; in the example above, the number is one (1). Later
statements in your program refer to the same number that you specified in the Open File statement.
For example, to read text from the file into a String variable, you could issue a Line Input statement,
and the Line Input statement would refer to the same file number (#1) as the Open File statement:

Line Input #1, s_nextline

If you need to have two or more files open at the same time, make sure that each file is opened
under a different number.

In some situations, you may need to create a new file in which to store your data. To create a new
file, issue an Open File statement that includes the For Output clause:

Open File "workfile.txt" For Output As #2

Alternately, you can specify For Append in the Open File statement. With Append mode, MapBasic
creates the file if it does not already exist, or MapBasic lets you append data to the file if it already
does exist. When you are finished reading from or writing to a file, issue a Close File statement. For
example:

Close File #1
160 MapBasic 11.5

Chapter 8: File Input/Output
Sequential File I/O
The number parameter is the same identification number assigned to the file in the Open File
statement. The pound sign (#) is optional. You do not need to execute a “save” command to save a
file that was created or modified through file input/output. You are done modifying the file as soon as
you issue the Close File statement. (MapBasic does provide a Save File statement, but its purpose
is to let you copy a file, not save changes to a file.)

There are many ways in which programs can generate runtime errors during file i/o. If the Open File
statement specifies the wrong file name, or if you attempt to open a file for output, but the file is
flagged as read-only, a runtime error will occur. If your program writes data to a file, the program
could generate a runtime error if the program runs out of disk space. If you try to open a file for
output, but that file is currently being modified by another network user, your program will generate a
runtime error. If you are developing an application that performs file input/output, you should build
error-handling routines into your program to detect and correct error conditions, and you should test
your application under conditions likely to cause problems (for example, out of disk space). For
information on how to create an error handler, see Debugging and Trapping Runtime Errors.

In some circumstances, you can prevent errors from happening by calling appropriate functions. For
example, before you issue an Open File statement, you can call the FileExists() function to
determine whether the file exists. Also, if your program needs to create a temporary, working file, but
you do not know what name or directory path to assign to the file (because you do not know the
names of your users’ directories), call the TempFileName$() function. Other statements that are
related to file i/o:

• The Kill statement deletes a file.
• The Save File statement saves a copy of a file.
• The Rename File statement changes the name of a file.
• Functions such as ProgramDirectory$(), HomeDirectory$() and ApplicationDirectory$() let

you determine different directory paths at runtime. For example, to build a string representing the
name of a file that exists in the MapInfo Professional directory (for example, the Startup
workspace), when you do not know the name of the directory, call ProgramDirectory$(), to
determine where MapInfo Professional is installed.

Sequential File I/O
If you intend to perform sequential file i/o (reading/writing of variable-length text files), there are three
different options you can specify in the Open File statement’s For clause: Input, Output, or
Append.

Use the For Input clause if you intend to read from an existing file. For example, the Named Views
sample program (nviews.mb) issues the following statement to open an existing text file for input:

Open File view_file For Input As #1

The string variable view_file contains the name of a text file.

After you open a file for Input, you can read from the file using either the Input # statement or the
Line Input # statement. The Line Input # statement reads an entire line from the file into a String
variable. With the Input # statement, you can treat each line of text as a comma-separated list of
values, and read each value into a separate variable.
MapBasic 11.5 161 User Guide

Sequential File I/O
For example, the Named Views application reads data that is formatted in the following manner:

"New York", -75.75, 42.83, 557.5
"Texas", -100.2, 31.29, 1200

Each line of the text file contains four values: a name, an x-coordinate, a y-coordinate, and a zoom
distance. The Named Views application uses the following Input # statement to read each line into
four separate variables:

Input #1, vlist(tot).descript,
vlist(tot).x,
vlist(tot).y,
vlist(tot).zoom

The vlist variable is an array of custom type variables.

When you read data sequentially, you need to test to see whether each read was successful. After
your program has read the entire contents of the file, if you attempt to read further the read operation
will fail. To test whether a read operation was successful, call the EOF() function (end-of-file) after
each input operation. If the EOF() function returns a value of FALSE, then you have not yet
exhausted the contents of the file (which means that your read was successful). When the EOF()
function returns TRUE, you are at the end of the file.

Reading the last line of the file does not cause the end-of-file condition. The EOF() function
will only return TRUE after you have attempted to read past the end of the file.

To create a file that contains a comma-separated list of expressions, issue an Open File statement
with the For Output clause or the For Append clause. After opening the file, use the Write #
statement to write data to the file. In the Write # statement, you can specify a comma-separated list
of expressions to be written to each line in the file. For example, the Named Views application issues
the following Write # statement (within a loop) to create a file with the four values (name, x, y, and
zoom) shown above:

Write #1, vlist(i).descript, vlist(i).x, vlist(i).y, vlist(i).zoom

The Write # statement encloses each string expression in double-quotation marks within the file, as
shown in the example above (“New York”…). In some situations, using the Write # statement may
be inappropriate, because you may not want text to be enclosed in quotation marks. To write text to
a file without quotation marks, use Print # instead of Write #.

If you want to read an entire line into one String variable, use the Line Input # statement. Use the
Print # statement to create a file that can later be read using the Line Input # statement. For an
example of using Print # and Line Input # to read or write an entire line at once, see the sample
program auto_lib.mb. The auto_lib program reads and writes MapInfo workspace files (specifically,
the startup workspace file).

You cannot write to a sequential file that was initially opened for input and you cannot read from a
sequential file that was initially opened for output.

Random File I/O
To perform random-access file i/o, specify the For Random clause in the Open File statement:
162 MapBasic 11.5

Chapter 8: File Input/Output
Platform-Specific & International Character Sets
Open File "datafile.dat" For Random As #1 Len = 80

When you open a file in Random mode, you include a Len clause that indicates the number of bytes
in each line in the file. Note that any text file contains end-of-line terminators; invisible characters
that are embedded in the file to mark the end of each line. The line length specified in the Len clause
(80 in the example above) specifies the exact number of characters in each record, including any
end-of-line terminators (for example, carriage-return/line-feed characters).

After you have opened a file for random access, you can read from or write to the file using the Get
and Put statements. See the MapBasic Reference Guide for more information about these
statements.

Binary File I/O
Binary files are files that contain numeric values stored in binary format. The following statement
demonstrates how to open a file for binary access:

Open File "settings.dat" For Binary As #1

After you have opened a file for binary access, you can read from or write to the file using the Get
and Put statements; see the MapBasic Reference Guide.

Numerical data stored in binary format is stored very efficiently. For example, each Integer value is
stored using exactly four bytes of the file, regardless of how large the Integer value is. By contrast, if
an Integer value is nine digits long (for example, 111,222,333), and you store the value in a text file,
the value will occupy nine bytes of the file. Binary storage provides a more efficient format for the
storage of non-text data. However, if you need to be able to view your files in a text editor, you
should store your data in text files rather than binary files.

The records in a binary file can include character strings, but they must be of fixed length.

Platform-Specific & International Character Sets
If you encounter problems reading text files that originated on another hardware platform or in
another country, you may need to use the Open File statement’s optional CharSet clause. Every
character on a computer keyboard corresponds to a numeric code. For example, the letter “A”
corresponds to the character code 65. A character set is a set of characters that appear on a
computer, and a set of numeric codes that correspond to those characters.

Different character sets are used in different countries. For example, in the version of Windows for
North America and Western Europe, character code 176 corresponds to a degree symbol; however,
if Windows is configured to use another country’s character set, character code 176 may represent a
different character. The fact that different countries use different character sets may cause problems
if you need to read a file that originated in a different country.

To correct character set-related misinterpretations, include a CharSet clause in your Open File
statement. The CharSet clause lets you explicitly state the character set with which the file was
originally created. If you include a CharSet clause which correctly identifies the file’s origin, MapInfo
MapBasic 11.5 163 User Guide

Platform-Specific & International Character Sets
Professional will correctly interpret data while reading from (or writing to) the file. For a listing of
character set names that can be used in a CharSet clause, see CharSet in the MapBasic Reference
Guide.

File Information Functions
The following functions return information about an open file:

• FileAttr() returns the mode in which the file was opened (INPUT, OUTPUT, APPEND,
RANDOM, or BINARY).

• EOF() returns a logical TRUE if there has been an attempt to read past the end-of-file, or if the
file pointer has been placed past the end-of-file.

• Seek() returns the location in the file in offset bytes. On a RANDOM file, this is the number of
the last record used times the record length, not the record number alone.

• LOF() returns the length of the entire file in bytes.

Each of these functions uses the file number assigned in the Open File statement as an argument.
For more information, see the MapBasic Reference Guide or online Help.
164 MapBasic 11.5

9

Graphical Objects
Much of MapBasic’s power lies in its ability to query and manipulate map
objects—arcs, ellipses, frames, lines, points, polylines, rectangles, regions,
rounded rectangles, and text objects. This chapter discusses how a MapBasic
program can query, create, and modify the objects that make up a map. Note,
however, that you need to understand the principles of MapInfo tables before
you can understand how MapBasic can store objects in tables. If you have not
already done so, you may want to read Working With Tables before reading
this chapter.

Topics in this section:

Using Object Variables .166
Using the “Obj” Column .166
Querying An Object’s Attributes. .168
Creating New Objects .175
Creating Objects Based On Existing Objects178
Modifying Objects .180
Working With Map Labels .182
Coordinates and Units of Measure .186
Advanced Geographic Queries. .188

Using Object Variables
Using Object Variables
MapBasic’s Object variable type allows you to work with both simple objects, like lines, and complex
objects, like regions. (Visual Basic programmers take note: MapBasic’s Object type represents
graphical shapes, not OLE objects.)

MapBasic Object variables can be treated much like other variables. You can assign values to
object variables, pass object variables as arguments to functions and procedures, and store the
values of object variables in a MapInfo table.

Use the Dim statement to define an object variable:

Dim Myobj, Office As Object

You do not have to specify the specific type of object that you want the variable to contain. An object
variable can contain any type of map or layout object.

Use the equal sign (=) to assign a value to an object variable, as shown in the next example:

Office = CreatePoint(73.45, 42.1)
Myobj = Office

You can assign objects from other object variables, functions that return objects, or table
expressions of the form tablename.Obj. However, there is no syntax for specifying a literal (“hard-
coded”) object expression.

An object variable holds all of the information that describes a map object. If you store a line object in
an object variable, the variable contains both geographic information about the line (for example, the
line’s starting and ending coordinates) and display information (the line’s color, thickness, and style).
MapBasic also provides four style variable types (Pen, Brush, Symbol, and Font) that can store
styles without storing object coordinates.

Using the “Obj” Column
The column named Obj is a special column that refers to a table’s graphical objects. Any table that
has graphical objects has an Obj column, although the Obj column typically does not appear in any
Browser window.

To access the contents of the Object column, use an expression of the form tablename.obj (or of
the form tablename.object). The following example declares an object variable (current_state),
then copies an object from the states table into the variable.

Dim current_state As Object
Open Table "states"
Fetch First From states
current_state = states.obj

You can perform the same kinds of operations with object columns that you can with regular
columns. You can use SQL queries that reference the object column, update the values (objects) in
the column, and read its contents into variables.
166 MapBasic 11.5

Chapter 9: Graphical Objects
Using the “Obj” Column
The following statement creates a query table with state abbreviations and the area of each state;
the Obj column is used as one of the parameters to the Area() function:

Select state, Area(obj, "sq mi")
From states

The next example creates a one-row table with the total miles of highway in California:

Select Sum(ObjectLen(obj, "mi"))
From highways
Where obj Within (Select obj From states Where state = "CA")

Some rows do not contain map objects. For example, if you open a database file as a MapInfo table
and geocode the table, the geocoding process attaches point objects to the rows in the table.
However, if some of the rows were not geocoded, those rows will not have map objects. To select all
the rows that do not have objects, use the condition Not obj in the Select statement’s Where
clause. The next statement selects all rows that do not have map objects:

Select *
From sites
Where Not obj

Creating an Object Column
Not all tables are “mappable.” For example, if you base a table on a spreadsheet or database file,
the file initially cannot be displayed in a map. To make the table mappable, you must use the Create
Map statement, which adds an object column to the table.

To remove the Object column from a table, use the Drop Map statement. Note that Drop Map
removes the object column completely. In some cases, you may want to delete individual objects
from a table, without deleting the entire Object column; this is sometimes referred to as “un-
geocoding” a table. To delete individual object values without removing the Object column, use the
Delete Object statement.

To determine whether a table has an Object column, call the TableInfo() function with the
TAB_INFO_MAPPABLE code.

Limitations of the Object Column
Object columns have some restrictions that do not apply to other column types. For example, you
can only have one object column per table. When you perform a selection that joins two tables, and
both tables have object columns, the results table contains only one of the table’s objects (the
objects from the first table listed in the Select statement’s From clause).

The next example performs a query involving two mappable tables: the states table, and an outlets
table, which contains point objects representing retail outlets. The Select statement’s From clause
lists both tables. Because the states table is listed first, the results table will contain objects from the
states table.

Select *
From states, outlets
Where states.state = outlets.state

Map From selection
MapBasic 11.5 167 User Guide

Querying An Object’s Attributes
If you list the outlets table first in the From clause, as shown below, the Select statement’s results
table will contain point objects (outlets), rather than state regions:

Select *
From outlets, states
Where outlets.state = states.state

Map From selection

Each row in a table can contain only one object. Note, however, that an individual object can contain
multiple parts. A region object can contain many polygons; thus, a group of islands can be
represented as a single region object. Similarly, a polyline object can contain many sections. To
determine the number of polygons in a region object or the number of sections in a polyline object,
select the object, and choose MapInfo Professional’s Edit > Get Info command. To determine the
number of sections or polygons from within a program, call the ObjectInfo() function with the
OBJ_INFO_NPOLYGONS code.

Querying An Object’s Attributes
A MapInfo table can contain a mixture of different types of objects. For example, a street map might
contain a mixture of lines and polylines. You can call the ObjectInfo() function with the
OBJ_INFO_TYPE code to determine the object’s type. For details, see ObjectInfo() in the
MapBasic Reference Guide or online Help.

If you are using the MapBasic window interactively, there are various other ways you can display an
object’s type. For example, you could issue the following statements from the MapBasic window to
display a message describing the object’s type:

Fetch First From world
Note world.obj

The following statement selects all Text objects from a Layout window.

Select *
From Layout1
Where Str$(obj) = "Text"

To determine information about an object’s geographic coordinates, call the ObjectGeography()
function. For example, call ObjectGeography() if you want to determine the x- and y-coordinates of
the end points of a line object. Determining coordinates of nodes in a polyline or region is more
complex, because polylines and regions have variable numbers of nodes. To determine coordinates
of nodes in a polyline or region, call ObjectNodeX() and ObjectNodeY().

To determine an object’s centroid, use the Centroid() function or the CentroidX() and
CentroidY() functions. To determine an object’s minimum bounding rectangle (the smallest
rectangle that encompasses all of an object), call the MBR() function.

To determine other types of object attributes, call the ObjectInfo() function. For example, after you
copy an object expression from a table into an Object variable, you can call ObjectInfo() to
determine the type of object (line, region, etc.), or call ObjectInfo() to make a copy of the object’s
Pen, Brush, Symbol, or Font style. If the object is a text object, you can use ObjectInfo() to read the
string that comprises the text object.
168 MapBasic 11.5

Chapter 9: Graphical Objects
Querying An Object’s Attributes
Many of the standard MapBasic functions take objects as arguments, and return one piece of
information about the object as a return value. For example, the Area(), Perimeter(), and
ObjectLen() functions take object parameters. The example below calculates the area of a flood
zone:

Dim floodarea As Float
Open Table "floodmap"
Fetch First From floodmap
floodarea = Area(floodmap.obj, "sq km")

Note that labels are not the same as text objects. To query a text object, you call functions such as
ObjectInfo(). To query a label, you call functions such as Labelinfo(). Labels are discussed in
Working With Map Labels on page 182.

Object Styles (Pen, Brush, Symbol, Font)
Every object has one or more style settings. For example, every line object has a Pen style, which
defines the line’s color, thickness, and pattern (for example, solid vs. dot-dash), and every Point
object has a Symbol style, which defines the point’s shape, color, and size. Enclosed objects such
as regions have both a Pen style and a Brush (fill) style.

The following table summarizes the four object styles.

For detailed information on the four styles, see Brush clause, Font clause, Pen clause, and Symbol
clause in the MapBasic Reference Guide and online Help.

The MapBasic language provides various statements and functions that allow you to create objects
(for example, the Create Text statement, the CreateLine() function, etc.). Each of the object
creation statements has optional clauses to let you specify the style(s) for that object. For example,
the Create Line statement includes an optional Pen clause that lets you specify the line’s style. If
you issue an object creation statement that does not specify any style settings, MapInfo Professional
assigns the current styles to the object.

You cannot use the = operator to compare two style values. For example, the following
program, which attempts to compare two Brush variables, will generate a runtime error.

Object Object Style

Pen Width, pattern, and color of a line

Brush Pattern, foreground color, and background color of a filled area

Font Font name, style, size, text color, background color; applies only to text objects

Symbol For MapInfo Professional symbols: Shape, color, and size attributes.

For symbols from TrueType Fonts: Shape, color, size, font name, font style (for
example, bold, italic, etc.), and rotation attributes.

For custom symbols based on bitmap files: File name, color, size, and style attributes.
MapBasic 11.5 169 User Guide

Querying An Object’s Attributes
Dim b1, b2 As Brush

b1 = MakeBrush(2, 255, 0)
b2 = CurrentBrush()

If b1 = b2 Then
Note "The two brush styles are equal."

End If

If you need to compare two styles, use the Str$() function to convert each style into a string
expression. For example, the following statement compares two Brush values:

If Str$(b1) = Str$(b2) Then ...

If you need to compare specific elements of a style (for example, to see whether two Symbol styles
have the same point size), use the StyleAttr() function to extract individual style elements (color,
etc.), and then compare the individual elements.

Understanding Font Styles
Every text object has a Font style. A Font style defines the type face (for example, Times Roman vs.
Helvetica), text style (for example, bold, italic, etc.), and text color. A Font style also identifies how
large the text is, in terms of point size. However, the point size is sometimes ignored. The following
list summarizes how a Font’s point size affects different types of text.

• When you create a text object in a Layout window, the Font’s point size controls the text height.
If the Font style specifies 10-point text, the text object is defined with 10-point text. The text might
not display at 10 points, depending on whether you zoom in or out on the Layout; but when you
print the Layout, the text height will be 10 points.

• When you use the Create Text statement to create a text object in a mappable table, the current
font’s point size is ignored. In this situation, the text height is controlled by map coordinates,
which you specify in the Create Text statement. When you issue a Create Text statement, you
specify two pairs of x- and y-coordinates that define a rectangular area on the map; the text
object fills the rectangular area. Because of this design, text objects stored in a mappable table
will grow larger as you zoom in, and grow smaller as you zoom out.

• When you use the CreateText() function to create a text object in a mappable table, the current
font’s point size controls the initial size of the text. However, zooming in on the map will cause
the text to grow larger.

• When you create a label in a Map window, the Font’s point size controls the text height. The text
displays and prints at the height specified by the Font style. Note that labels behave differently
than text objects stored in a table. Labels are discussed in Working With Map Labels on
page 182.

A Font style includes a font name, such as “Courier” or “Helvetica.” Font names may be different on
each hardware platform; for example, Helv and TmsRmn (or Times New Roman) in the Microsoft
Windows environment are called Helvetica and Times on the Sun platforms. Helvetica, Times and
Courier are recognized in a MapBasic Font clause regardless of the platform that is in use at
runtime.
170 MapBasic 11.5

Chapter 9: Graphical Objects
Querying An Object’s Attributes
Stacked Styles
You can stack styles for a layer, so that they become a list of styles drawn on top of each other, to
create a more complex or interesting looking map feature. You can stack styles for points, polylines,
and polygon features. This is especially useful for polyline styles.

Figure 1 shows a sample line using one of MapInfo's interleaved line styles. Figure 2 shows the
same sample using a stacked line style.

Stacked styles create more meaningful display styles for your application without having to add your
data as multiple layers in a map. You can define as many styles in a stacked style as you want.
However, the more styles you define the more you will impact the map's rendering performance.
Typically, most cartographic maps would use two or three styles in a stacked style to draw features.

Stacked Styles are part of Layer Style Overrides

To set up a stacked style, you must first check the layer's Style Override checkbox, which you
access through Layer Control's Layer Properties dialog box (or, similarly, through the Zoom Ranged
Display Override dialog box). Stacked styles become part of your layer's display settings and apply
to every object in the layer. Stacked styles are not stored as part of a TAB file; instead, they are
saved in a workspace, because they are part of a layer's display settings. This means that you can
apply stacked styles even if the TAB files you are working with are read-only.

MapBasic for Stacked Styles

Stacked styles are fully supported in MapBasic. They are defined as a list of like style clauses
separated by commas. For instance, to define the stacked line style previously you would use:

Line (7,2,8388608), Line (2,9,16744703)

To use this as a global style override for your map layer, you would add it to the Global clause in a
Set Map statement:

Set Map Layer 1 Display Global Global Line (7,2,8388608), Line
(2,9,16744703)

The first Line clause encountered in MapBasic is drawn first, followed by the next Line clause if there
is a comma, and so on.

Figure: Figure 1: Figure: Figure 2:
MapBasic 11.5 171 User Guide

Querying An Object’s Attributes
To create stacked styles for Layer Display Overrides using MapBasic, see the MapBasic Reference
for the Set Map statement. To query stacked style attributes, refer to new functions in the What's
New section of the MapBasic Reference.

More Stacked Style Examples

A stacked point style can make the symbol stand out more. Here are examples of what that can look
like and the MapBasic statement to make this part of a layer's global style.

Example with a Point Object (Symbols)

A stacked style point can make the point symbol stand out more.

Example with a Polygon (Region)

A stacked region style could be used to create a fill that uses two colors and two different line
patterns.

Style Variables
MapBasic provides style variable types—Pen, Brush, Symbol, and Font—that correspond to object
style attributes. There are several ways you can assign a style to a style variable:

• Build a style expression by calling MakePen(), MakeBrush(), MakeFont(), MakeSymbol(),
MakeCustomSymbol(), or MakeFontSymbol(), and assign the value to the style variable.
These functions allow you to explicitly specify the desired styles. For example, the ScaleBar
sample program calls MakeBrush() to build black and white brush expressions, so that the
scale bar can have alternating blocks of black and white.

• Call CurrentPen(), CurrentBrush(), CurrentFont(), or CurrentSymbol(), and assign the
return value to the style variable. These functions read the current styles (i.e., the styles that
appear if you choose MapInfo Professional’s Options > Line Style, Region Style, Symbol
Style, or Text Style command when there are no objects selected).

• Call ObjectInfo() to determine the style of an existing object, and assign the return value to a
style variable.

• Let the user choose a style through a dialog box. If a dialog box contains a PenPicker,
BrushPicker, SymbolPicker, or FontPicker control, the user can choose a style by clicking on the
control. For more information on dialog boxes, see Creating the User Interface.

Set Map Layer 1 display Global Global
Symbol (32,16777136,24),
Symbol (36,255,14)

Set Map Layer 1 Display Global Global
Brush (4,0,16777215),
Brush (5,16711680)
172 MapBasic 11.5

Chapter 9: Graphical Objects
Querying An Object’s Attributes
The following example demonstrates how to call the MakePen() function to construct a Pen style.
The Pen style value is assigned to a Pen variable.

Dim p_var as Pen
p_var = MakePen(1, 10, RGB(128, 128, 128))

The MakePen() function’s arguments define the pen style: 1 signifies that the style is one pixel
wide, 10 signifies a pattern (dotted), and the RGB() function call specifies a color. For more
information about the three parameters that make up a pen style (including a chart of all available
line patterns), see Pen clause in the MapBasic Reference Guide or online Help. Similarly, for more
information about Brush, Font, or Symbol options, see Brush clause, Font clause, or Symbol
clause.

The following example demonstrates how to read an existing object’s Pen style into a Pen variable:

p_var = ObjectInfo(obj_var, OBJ_INFO_PEN)

Once you have stored a Pen expression in a Pen variable, you can use the Pen variable within an
object creation statement:

Create Line Into Variable obj_var
(-73, 42) (-74, 43)
Pen p_var

The function StyleAttr() returns one component of a particular style. For example, the TextBox
sample program displays a dialog box that lets the user choose a pen style; the selected style is
stored in the Pen variable, pstyle. TextBox then issues the following statement to read the Pen
style’s color component into an Integer variable (line_color):

line_color = StyleAttr(pstyle, PEN_COLOR)

Colors are stored internally as integer numbers. For instance, black is 0 and blue is 255. The RGB()
function calculates the color value from quantities of red, green, and blue that you specify. For
instance, the function call RGB(0, 255, 0) returns the color value for green.

Use the RGB() function where a color is called for. For example:

highway_style = MakePen(2, 2, RGB(0, 0, 255))

Alternately, instead of calling RGB() you can use one of the standard color definition codes
(BLACK, WHITE, RED, GREEN, BLUE, YELLOW, CYAN, and MAGENTA) defined in mapbasic.def.

Selecting Objects of a Particular Style
The ObjectInfo() function lets you extract a Pen, Brush, Symbol, or Font value from an object.
Once you have a Pen, Brush, Symbol or Font, you can call the StyleAttr() function to examine
individual elements (for example, to determine the color of a Symbol style).

You can use the Select statement to select objects based on styles. As the following example
shows, the Select statement’s Where clause can call the ObjectInfo() and StyleAttr() functions,
so that MapInfo Professional selects only those objects that have certain attributes (for example,
objects of a certain color).
MapBasic 11.5 173 User Guide

Querying An Object’s Attributes
The following example adds a custom button to the Tools toolbar. If you select a point object and
then click the custom button, this program selects all point objects in the same table that have the
same color.

Include "mapbasic.def"
Declare Sub Main
Declare Sub SelectPointsByColor()

Sub Main
’ Add a custom button to the Tools toolbar.
Alter ButtonPad "Tools" Add
PushButton

Calling SelectPointsByColor
HelpMsg "Select points of same color\nSelect By Color"

End Sub

Sub SelectPointsByColor
Dim i_color, i_open As Integer
Dim symbol_style As Symbol
Dim object_name, table_name As String

’ Note how many tables are currently open.
i_open = NumTables()

’ Determine the name of the table in use.
table_name = SelectionInfo(SEL_INFO_TABLENAME)
If table_name = "" Then

’ ... then nothing is selected; just exit.
Exit Sub

End If
’ Exit if the selection is in a non-mappable table.
If Not TableInfo(table_name, TAB_INFO_MAPPABLE) Then

Exit Sub
End If
’ See whether the selected object is a Point.
’ If it is a Point, determine its Symbol and Color.
Fetch First From Selection
object_name = Str$(Selection.obj)
If object_name = "Point" Then

symbol_style = ObjectInfo(Selection.obj,OBJ_INFO_SYMBOL)
i_color = StyleAttr(symbol_style, SYMBOL_COLOR)

End If

’ Accessing "Selection.obj" may have caused MapInfo Professional to
’ open a temporary table called Query1 (or Query2...).
’ Let’s close that table, just to be tidy.
If NumTables() > i_open Then

Close Table TableInfo(0, TAB_INFO_NAME)
End If

If object_name <> "Point" Then
’...the selected object isn’t a point; just exit.
174 MapBasic 11.5

Chapter 9: Graphical Objects
Creating New Objects
Exit Sub
End If

’ Select all the rows that contain point objects.
Select * From table_name

Where Str$(Obj) = "Point"
Into Color_Query_Prep NoSelect

’ Select those point objects that have the same
’ color as the original object selected.
Select * From Color_Query_Prep

Where
StyleAttr(ObjectInfo(obj,OBJ_INFO_SYMBOL),SYMBOL_COLOR)
= i_color

Into Color_Query

Close Table Color_Query_Prep

End Sub

This example works with point objects, but the same techniques could be used with other object
types. For example, to work with region objects instead, you would test for the object name “Region”
instead of “Point”, and call ObjectInfo() with OBJ_INFO_BRUSH instead of OBJ_INFO_SYMBOL,
etc.

Creating New Objects
MapBasic contains a set of statements and functions through which you can create graphical
objects. This section provides an introduction to object-creation statements and functions; for more,
see the MapBasic Reference Guide.

Object-Creation Statements
The following statements can be used to create new objects. All of the statements may be used to
create objects on Layout windows. All of the statements except for Create Frame may be used to
create objects on Map windows.

• Create Arc statement: Creates an arc.
• Create Ellipse statement: Creates an ellipse or a circle. (A circle is simply a special case of an

arc—an arc with equal width and height.)
• Create Frame statement: Creates a frame. Frames are special objects that exist only on Layout

windows; each frame can display the contents of an open window. Thus, if you want to place two
maps on your page layout, create two frames.

• Create Line statement: Creates a line.
• Create Point statement: Creates a point.
• Create Pline statement: Creates a polyline.
• Create Rect statement: Creates a rectangle.
• Create Region statement: Creates a region.
• Create RoundRect statement: Creates a rounded rectangle.
MapBasic 11.5 175 User Guide

Creating New Objects
• Create Text statement: Creates a text object.
• AutoLabel statement: This statement “labels” a Map window by drawing text objects to the

Cosmetic layer. This statement does not create labels, it creates text objects. To create labels,
use the Set Map statement.

Object-Creation Functions
The following MapBasic functions return object values:

• CreateCircle() function: returns a circle object.
• CreateLine() function: returns a line object.
• CreatePoint() function: returns a point object.
• CreateText() function: returns a text object.

In some ways, object-creation functions are more powerful than the corresponding object-creation
statements, because a function call can be embedded within a larger statement. For example, the
following Update statement uses the CreateCircle() function to create a circle object for every row
in the table:

Update sites
Set obj = CreateCircle(lon, lat, 0.1)

This example assumes that the sites table has a lon column containing longitude values (x
coordinates) and a lat column containing latitude values (y coordinates).

Creating Objects With Variable Numbers of Nodes
Polyline objects and region objects are more complex than other objects in that polylines and
regions can have variable numbers of nodes (up to 32,763 nodes per object).

You can create a region object using the Create Region statement. In the Create Region
statement, you can explicitly state the number of nodes that the object will contain. However, there
are situations where you may not know in advance how many nodes the object should contain. For
example, a program might read object coordinates from a text file, then build a region object that
contains one node for each pair of coordinates read from the file. In that situation, the program
cannot know in advance how many nodes the object will contain, because the number of nodes
depends on the amount of information provided in the file.

If your program will create region or polyline objects, you may want to create those objects in two
steps:

1. Issue a Create Region statement or a Create Pline statement to create an empty object (an
object that has no nodes).

2. Issue Alter Object statements to add nodes to the empty object. The Alter Object statement is
usually placed within a loop, so that each iteration of the loop adds one node to the object.

The following example demonstrates this process:

Include "mapbasic.def"

Type Point
x As Float
176 MapBasic 11.5

Chapter 9: Graphical Objects
Creating New Objects
y As Float
End Type

Dim objcoord(5) As Point
Dim numnodes, i As Integer, myobj As Object
numnodes = 3
set CoordSys Earth
objcoord(1).x = -89.213 objcoord(1).y = 32.017
objcoord(2).x = -89.204 objcoord(2).y = 32.112
objcoord(3).x = -89.187 objcoord(3).y = 32.096

Create Pline Into Variable myobj 0

For i = 1 to numnodes
Alter Object myobj Node Add (objcoord(i).x,objcoord(i).y)

Next

Insert Into cables (obj) Values (myobj)

Storing Objects In a Table
After you create an object and store it in an Object variable, you usually will want to store the new
object in a table. The user will not be able to see the object unless you store the object in a table.

To store an object value in a table, use the Insert statement or the Update statement. Which
statement you should use depends on whether you want to attach the object to an existing row or
create a new row to store the object.

Use the Update statement to attach an object to an existing row in a table. If that row already has an
object, the new object replaces the old object. The Update statement can update any column in a
table; to update a row’s graphical object, refer to the special column name Obj.

For example, the following statement stores a point object in the Obj column of the first row in the
Sites table:

Update sites
Set Obj = CreatePoint(x, y)
Where RowID = 1

Use the Insert statement to add a new row to a table. Insert lets you add one row to a table at a time
or insert groups of rows from another table. The following statement inserts one new row into the
Sites table, and stores a line object in the new row’s Obj column:

Insert Into sites (Obj)
Values (CreateLine(x1, y1, x2, y2))

The TextBox sample program demonstrates both the Insert statement and the Update statement.
The TextBox application draws a box (a rectangle object) around each selected text object; each
box is stored using an Insert statement. In addition, if the user checks the Change Text Color to
Match Box Color check box, the program also changes the color of the selected text object, and
then uses an Update statement to store the modified text object back in the table.
MapBasic 11.5 177 User Guide

Creating Objects Based On Existing Objects
The Insert and Update statements are both powerful, flexible table-manipulation statements. In the
preceding examples, the statements operated only on one column (the graphical object column,
Obj); however, you can manipulate any column of your table using Insert and Update.

Creating Objects Based On Existing Objects
A MapBasic program can create new objects based on existing objects. This section provides an
introduction to various MapBasic statements and functions; for more information about a particular
statement or function, see the MapBasic Reference Guide or online Help.

Creating a Buffer
A buffer region is a region representing the area within a certain distance of another object or
objects. Buffers are useful for locating objects within a certain distance of other objects. For
instance, you can create a buffer around a fiber optic cable to find all the dig sites within three
hundred meters of the cable. You can use the Create Object statement to create buffer regions.

The following example creates a 300-meter buffer region around the selected segment of cable,
then searches for dig locations within the buffer:

Dim danger_zone As Object

Create Object As Buffer
From selection
Into Variable danger_zone
Width 300 Units "m"

Select * From dig_sites Where dig_site.obj Within danger_zone

MapBasic also provides a Buffer() function, which returns an object value representing a buffer
region.

Using Union, Intersection, and Merge
The Create Object statement also can calculate unions and intersections of regions. If you specify
Create Object As Merge, MapInfo Professional removes common segments from two or more
neighboring regions, producing a single, combined region. When two regions with a common border
are merged (for example, Nevada and California), the resulting region covers the total area of both
regions. The border between the neighboring regions is removed.

The following example demonstrates how to combine two regions from the states table:

Select *
From states
Where state ="CA" Or state = "NV"

Create Object As Merge
From selection
Into Table territory
178 MapBasic 11.5

Chapter 9: Graphical Objects
Creating Objects Based On Existing Objects
The Merge operation is an exclusive-or (XOR) process. If you merge two region objects, and one of
the objects is completely contained within the other object, the merge operation removes the smaller
object’s area from the larger object, leaving a hole.

Merge creates a new object. The two merged regions still exist in the source table. You may want to
remove the two original regions, as shown below:

Select * From Territory Where TerrName = "Western Territory" or TerrName =
"NV"
Delete From selection

Create Object As Union and Create Object As Intersection let you create a region that
represents logical combinations of two or more regions. These statements are different from Merge
because they work with all of the segments of the source regions, not just the common segments. A
Union is the total area of all polygons. An Intersection is the overlapping area. The object created by
a union or an intersection may contain new nodes that don’t appear in the original regions.
MapBasic also provides a Combine() function, which returns the object produced by combining two
other objects.

Creating Isograms
An Isogram is a map that displays a set of points that satisfy a distance or time condition. Isograms
are either IsoChrones or IsoDistances. An IsoChrone is a polygon or set of points representing an
area that can be traversed from a starting point in a given amount of time along a given road
network. An IsoDistance is a polygon or set of points representing an area that can be traversed
from a starting point travelling a given distance along a given road network.

Using the Create Object As Isogram statement you can create one or more of these regions, each
with a different brush and pen style to differentiate them on your map. In order to create an Isogram,
you need the use of an external service such as Envinsa.

To create an Isogram:

1. Open a connection to Envinsa using the Open Connection statement.
The statement returns a handle to the connection in a variable that is passed on.

2. Configure the Isogram connection with the Set Connection Isogram statement.

3. Create the desired region with the Create Object As Isogram statement.

Creating Offset Copies
A group of Offset functions and statements can be use to produce new objects that are offset from
the initial objects by specified units.

The following statements can be used to create offset copies of existing objects.

• Offset() function: returns a copy of initial object offset by specified distance and angle.
• OffsetXY() function: returns a copy of initial object offset by a specified distance along the X and

Y axes.
• SphericalOffset() function: returns a copy of initial object by a specified distance and angle.

The Distance Type used must be Spherical.
MapBasic 11.5 179 User Guide

Modifying Objects
• SphericalOffsetXY() function: returns a copy of initial object by a specified distance and angle.
The Distance Type used must be Spherical.

• CartesianOffset() function: returns a copy of initial object by a specified distance and angle.
The Distance Type used must be Cartesian.

• CartesianOffsetXY() function: returns a copy of initial object by a specified distance and angle.
The Distance Type used must be Cartesian.

Modifying Objects

General Procedure for Modifying an Object
MapBasic provides many statements that you can use to modify an existing map object. Regardless
of which statement you use to modify an object, the process of modifying an object is as follows:

1. Make a copy of the original object. (Often, this involves declaring an object variable, issuing a
Fetch statement to position the row cursor, and issuing an assignment statement of the form
variable_name = tablename.obj).

2. Issue statements or functions to modify the object. (This often involves issuing one or more Alter
Object statements.)

3. Issue an Update statement to store the modified object back in the table.

The TextBox program demonstrates this process. If the user checks the Change Text Color to
Match Box Color check box, the TextBox program uses an Alter Object statement to change the
color of the selected object, and then uses an Update statement to store the altered text object back
in the table.

Repositioning An Object
Use the Objects Move statement to move objects a specified distance along the positive X axis.
You can also specify the Distance Units and Distance Type. Use the Objects Offset statement to
make a new copy of objects offset a specified distance along the positive X axis. You can also
specify the Distance Units and Distance Type and specify whether the copied objects are placed in
the same table as the source objects or into a different table.

Moving Objects and Object Nodes
To modify an object’s coordinates, issue an Alter Object statement that includes a Geography
clause. You may need to issue more than one Alter Object statement (one statement to reset the
object’s x-coordinate, and another statement to reset the y-coordinate).

Modifying An Object’s Pen, Brush, Font, or Symbol Style
The Alter Object statement lets you modify an object’s style. The example below uses the Alter
Object command to change a selected object in a table:
180 MapBasic 11.5

Chapter 9: Graphical Objects
Modifying Objects
Include "mapbasic.def"
Dim myobj As Object, mysymbol As Symbol
mysymbol = CurrentSymbol()
Fetch First From selection
myobj = selection.obj
If ObjectInfo(myobj, OBJ_INFO_TYPE) = OBJ_POINT Then

Alter Object myobj
Info OBJ_INFO_SYMBOL, mysymbol

Update selection Set obj = myobj Where RowID = 1
Else

Note "The selected object is not a point."
End If
• To modify the height of a text object that appears on a Layout window, change the object’s Font

style (by issuing an Alter Object statement with an Info clause).
• To modify the height of a text object that appears on a Map window, change the object’s x- and

y-coordinates (by issuing an Alter Object statement with a Geography clause).
• To modify the height of a map label, issue a Set Map statement.

Converting An Object To A Region or Polyline
To convert an object to a region object, call the ConvertToRegion() function. To convert an object
to a polyline object, call the ConvertToPline() function. For more information on these functions,
see the MapBasic Reference Guide or online Help.

Erasing Part Of An Object
The following statements and functions allow you to erase part of an object:

• The Overlap() function takes two object parameters, and returns an object value. The resulting
object represents the area where the two objects overlap (the intersection of the two objects).

• The Erase() function takes two object parameters, and returns an object value. MapInfo
Professional erases the second object’s area from the first object, and returns the result.

• The Objects Intersect statement erases the parts of the current target objects that are not
covered by the currently-selected object.

• The Objects Erase statement erases part of the currently-designated target object(s), using the
currently-selected object as the eraser.

The Objects Erase statement corresponds to MapInfo Professional’s Objects > Erase command,
and the Objects Intersect statement corresponds to MapInfo Professional’s Objects > Erase
Outside command. Both operations operate on the objects that have been designated as the
“editing target.” The editing target may have been set by the user choosing Objects > Set Target, or
it may have been set by the MapBasic Set Target statement. For an introduction to the principles of
specifying an editing target, see the MapInfo Professional User Guide.
MapBasic 11.5 181 User Guide

Working With Map Labels
Points Of Intersection
As mentioned earlier, you can add nodes to a region or polyline object by issuing an Alter Object
statement. However, the Alter Object statement requires that you explicitly specify any nodes to be
added. If you want to add nodes at the locations where two objects intersect, use the Objects
Overlay statement or the OverlayNodes() function.

Call the IntersectNodes() function to determine the coordinates of the point(s) at which two objects
intersect. IntersectNodes() returns a polyline object containing a node at each point of intersection.
Call ObjectInfo() to determine the number of nodes in the polyline. To determine the coordinates of
the points of intersection, call ObjectNodeX() and ObjectNodeY().

Working With Map Labels
A map label is treated as a display attribute of a map object. However, MapInfo Professional still
supports the AutoLabel statement to provide backwards compatibility with older versions of the
product in which map labels were text objects in the Cosmetic layer.

Turning Labels On
A MapInfo Professional user can configure labeling options through the Layer Control window. A
MapBasic program can accomplish the same results through the Set Map…Label statement. For
example, the following statement displays labels for layer 1:

Set Map Layer 1 Label Auto On Visibility On

Turning Labels Off
In the Layer Control window, clearing the Automatic Labels Off/On button (in the list of layers)
turns off the default labels for that layer. This MapBasic statement has the same effect:

Set Map Layer 1 Label Auto Off

The Set Map…Auto Off statement turns off default (automatic) labels, but it does not affect
custom labels (labels that were added or modified by the user). The following statement
temporarily hides all labels for a layer—both default labels and custom labels:

Set Map Layer 1 Label Visibility Off

A MapInfo Professional user can reset a layer’s labels to their default state by choosing Map > Clear
Custom Labels. This MapBasic statement has the same effect:

Set Map Layer 1 Label Default

Editing Individual Labels
MapInfo Professional users can edit labels interactively. For example, to hide a label, click on the
label to select it, and press Delete. To move a label, click the label and drag.
182 MapBasic 11.5

Chapter 9: Graphical Objects
Working With Map Labels
To modify individual labels through MapBasic, use a Set Map…Label statement that includes one
or more Object clauses. For example, the following statement hides two of the labels in a Map
window:

Set Map Layer 1 Label
Object 1 Visibility Off
Object 3 Visibility Off

For each label you want to customize, include an Object clause. In this example, Object 1 refers to
the label for the table’s first row, and Object 3 refers to the label for the table’s third row. To save
custom labels, save a workspace file; see the MapBasic Save Workspace statement.

CAUTION: Packing a table can invalidate custom (edited) labels previously stored in
workspaces. When you store edited labels by saving a workspace, the labels are
represented as Set Map…Object… statements. Each Object clause refers to a
row number in the table. If the table contains rows that have been marked
deleted (i.e., rows that appear grayed out in a Browser window), packing the
table eliminates the deleted rows, which can change the row numbers of the
remaining rows.

In other words, if you pack a table and then load a previously-saved workspace, any edited labels
contained in the workspace may be incorrect. Therefore, if you intend to pack a table, you should do
so before creating custom labels.

If the only deleted rows in the table appear at the very end of the table (i.e., at the bottom of a
Browser window), then packing the table will not invalidate labels in workspaces.

Querying Labels
Querying a Map window’s labels is a two-step process:

1. Initialize MapBasic’s internal label pointer by calling LabelFindFirst(), LabelFindByID(), or
LabelFindNext().

2. Call Labelinfo() to query the “current” label. For an example, see Labelinfo() in the MapBasic
Help, or see the sample program, LABELER.MB.

Other Examples of the Set Map Statement
To see the MapBasic syntax that corresponds to the Layer Control window, do the following:

1. Open the MapBasic window.

2. Make a Map window the active window.

3. Choose Map > Layer Control to display the Layer Control window.

4. Select the desired options.

MapInfo Professional applies your changes, and displays a Set Map statement in the MapBasic
window. You can copy the text out of the MapBasic window and paste it into your program.

To see the MapBasic syntax that corresponds to editing an individual label, do the following:

1. Modify the labels in your Map window. (Move a label, delete a label, change a label’s font, etc.)
MapBasic 11.5 183 User Guide

Working With Map Labels
2. Save a workspace file.

3. View the workspace file in a text editor, such as the MapBasic editor. Edits to individual labels
are represented as Set Map… Layer… Label… Object statements in the workspace.

Differences Between Labels and Text Objects
The following table summarizes the differences between text objects and labels.

When you create a label, you specify the label’s anchor point (in x- and y-coordinates). For example,
if you are viewing a map of the World table, this statement creates a label that acts as a title:

Set Map Layer 1 Label Object 1
Visibility On ’show this record’s label
Anchor (0, 85) ’anchor the label at this (x,y)
Text "Map of World"’set label’s text

Text objects Labels

MapBasic statements used to
create the text:

AutoLabel, Create Text,
CreateText()

Set Map

MapBasic statements used to
modify the text:

Alter Object Set Map

MapBasic functions used to
query the text (for example, to
determine its color):

ObjectInfo(),
ObjectGeography()

LabelFindByID(),
LabelFindFirst(),
LabelFindNext(),
Labelinfo()

MapBasic statement used to
select the text:

Select MapBasic programs cannot
select labels.

Saving text in a Map: Text objects can be stored in
mappable tables.

Labels are only stored in
workspaces.

Saving text in a Layout: Text objects created in a
Layout can be saved in a
workspace.

Not applicable. Labels cannot
appear in layouts (except
when a map is in a layout).

Controlling the text height: Text height is affected by the
current map scale. Text grows
larger as you zoom in, and
smaller as you zoom out.

A label's text height is
controlled by its font. Zooming
in or out does not affect a
label's text height.

Converting between text and
labels:

Not applicable. Given a text
object, there is no MapBasic
function that returns a Label.

Given a label, the Labelinfo()
function can return a text
object that approximates the
label. See LABELER.MBX for
an example.
184 MapBasic 11.5

Chapter 9: Graphical Objects
Working With Map Labels
Position Center ’set position relative to anchor
Font("Arial",289,20,0)’set font style (20-point, etc.)

The resulting label can act as a map title.

If you need to place text on your map, you may find it easier to create labels, rather than text objects.
You could create a table whose sole purpose is to be labeled, using this procedure:

1. Create a table (using the Create Table statement) that contains a character column. Make the
character column wide enough to store the text that you want to appear on the map. Make the
table mappable (using the Create Map statement).

2. Add the table to your Map window (using the Add Map statement). Use the Set Map statement
to set the table’s labeling options (font, Auto On, etc.).

3. When you want to add text to the map, insert a point or line object into the table, using an
invisible symbol style (shape 31) or invisible pen style (pattern 1). The object will not be visible,
but its label will appear. (Use line objects if you want the text to be rotated.)

The sample program COGOLine.mb demonstrates how to create a line object at a
specific angle.

With this strategy, you do not need to use Set Map…Object statements to customize each
label’s position. You can display labels at their default positions. Then, if you want to move a
label, move the object that corresponds to the label.
MapBasic 11.5 185 User Guide

Coordinates and Units of Measure
Coordinates and Units of Measure
A MapBasic application can work in only one coordinate system at a time. MapBasic uses Earth
coordinates, non-Earth coordinates, or Layout coordinates. The fact that MapBasic has a current
coordinate system gives rise to the following programming guidelines:

• Before you create, modify, or query objects from an Earth map, make sure that MapBasic is
working in an Earth coordinate system. This is the default. With many MapBasic applications you
do not need to worry about coordinate systems.

• Before creating, modifying, or querying objects from a non-Earth map, make sure that MapBasic
is working in a non-Earth coordinate system. To do this, issue a Set CoordSys Nonearth
statement.

• Before creating, modifying, or querying objects from a Layout window, make sure that MapBasic
is working in a Layout coordinate system. To do this, issue a Set CoordSys Layout statement.

Each MapBasic application has a CoordSys system setting that represents the coordinate system
currently in use by that application. The default coordinate system setting is the Earth (longitude,
latitude) system. By default, every MapBasic application can work with objects from Earth maps, and
most MapInfo tables fall into this category. If a MapBasic application needs to work with objects on a
Layout window, you must first issue a Set CoordSys Layout statement, as follows:

Set CoordSys Layout Units "in"

The Set CoordSys Layout statement lets you specify a paper unit name, such as “in” (inches). This
dictates how MapBasic interprets Layout window coordinate information. To work in centimeters or
millimeters, specify the unit name as cm or mm respectively. The following program opens a Layout
Window, then places a title on the layout by creating a text object. Since the object is created on a
Layout window, the Create Text statement is preceded by a Set CoordSys Layout statement.

Include "mapbasic.def"

Dim win_num As Integer
Layout
win_num = FrontWindow()
Set CoordSys Layout Units "in"

Create Text
Into Window win_num
"Title Goes Here"
(3.0, 0.5) (5.4, 1.0)
Font MakeFont("Helvetica", 1, 24, BLUE, WHITE)

In the example above, the Layout coordinate system uses inches as the unit of measure. All of the
coordinates specified in the Create Text statement represent inches. After you change the
coordinate system through the Set CoordSys statement, the new coordinate system remains in
effect until you explicitly change it back. Every MapBasic application has its own coordinate system
setting. This allows one application to issue a Set CoordSys statement without interfering with any
other applications that are running.

The MapBasic coordinate system is independent of the coordinate system used by any MapInfo
Professional Map window. The default coordinate system is latitude/longitude (NAD 1927)
(represented by decimal degrees, not degrees, minutes, and seconds.)
186 MapBasic 11.5

Chapter 9: Graphical Objects
Coordinates and Units of Measure
All coordinates specified in MapBasic statements or functions should be in latitude and longitude
unless you change the MapBasic coordinate system with the Set CoordSys statement. For
example, the function Centroidx() returns the longitude of an object’s centroid in decimal degrees,
by default, even if the object is stored in a table or a window that has been assigned a different
coordinate system. For example, the selection resulting from the statement below has the values:
WY -107.554 43, the longitude and latitude of the centroid of Wyoming:

Select state, CentroidX(obj), CentroidY(obj)
From states
Where state = "WY"

After the following statements are executed, the selection contains: WY -934612.97 2279518.38; the
coordinates reflect an Albers projection.

Set CoordSys Earth Projection 9, 62, "m", -96, 23, 29.5, 45.5, 0, 0
Select state, CentroidX(obj), CentroidY(obj)

From states
Where state = "WY"

To reset the MapBasic coordinate system to its default, issue the following statement:

Set CoordSys Earth

Units of Measure
MapBasic programs deal with the following units of measure:

• Area units, such as square miles and acres, represent measurements of geographic areas. For a
complete list of the area units supported by MapBasic, see Set Area Units in the MapBasic
Reference Guide. Because different area units are supported, functions, such as Area(), can
return results in whatever units are appropriate to your application.

• Distance units, such as kilometers and miles, represent measurements of geographic distance.
For a list of distance units supported by MapBasic, see Set Distance Units in the MapBasic
Reference Guide.

• Paper units, such as inches or centimeters, represent non-geographic distances. For example, if
you issue a Set Window statement to reset the width or height of a Map window, you specify the
window’s new size in paper units, such as inches (on the screen).

At any point during a MapInfo Professional session, there is a current distance unit, a current area
unit, and a current paper unit. The default units are miles, square miles, and inches, respectively.
The effect of default units is best illustrated by example. The following statement creates a circle
object:

obj_var = CreateCircle(x, y, 5)

Because MapBasic’s default distance unit is miles, the circle object will have a radius of five miles.
However, if you reset the distance unit by issuing a Set Distance Units statement, the meaning of
the radius parameter (5) changes. Thus, the following example creates a circle object with a radius
of 5 kilometers:

Set Distance Units "km"
obj_var = CreateCircle(x, y, 5)
MapBasic 11.5 187 User Guide

Advanced Geographic Queries
To reset the current area unit or the current paper unit, use the Set Area Units statement or the Set
Paper Units statement, respectively.

Advanced Geographic Queries
MapBasic programs can perform complex data queries that take both tabular and graphical data into
account. For example, your program can use the Add Column statement to calculate totals and
averages of data values within a region, based on how the region object overlaps and intersects
objects in other map layers.

To understand how MapBasic and MapInfo Professional can perform data-driven geographic
analysis, you must understand how MapBasic programs can manage and query tables. If you have
not already done so, you may want to read Working With Tables before reading this section.

Using Geographic Comparison Operators
MapBasic does not allow you to use the equal operator (=) to perform logical comparisons of objects
(If object_a = object_b). However, MapBasic does provide several geographic operators
that let you compare objects to see how they relate spatially. The MapBasic comparison operators
Contains, Within, and Intersects and the optional modifiers Part and Entire allow you to compare
objects in much the same way as the relational operator can be used with numbers.

Below is an example of a geographic comparison in an If…Then statement:

If Parcel_Object Within Residential_Zone_Obj Then
Note "Your Property is zoned residential."

End If

The example below illustrates a geographic comparison in a Select statement:

Select * From wetlands
Where obj Contains Part myproject

At least one of the objects used in a Within and Contains condition should be an object that
represents an enclosed area: regions, ellipses, rectangles, or rounded rectangles.

Whether you use Within or Contains depends on the order of the objects in the expression. The
rule is as follows:

• Use Within to test whether the first object is inside the second object.
• Use Contains to test whether the first object has the second object inside of it.

For example, when comparing points with regions:

The following statement selects the state(s) containing a distribution center object:

Points are Within regions.

Regions Contain points.
188 MapBasic 11.5

Chapter 9: Graphical Objects
Advanced Geographic Queries
Select * From states
Where obj Contains distribution_ctr

The next statement selects all of the landfills within a county:

Select * From landfill
Where obj Within county_obj

The Within operator and the Contains operator test whether the centroid of an object is inside the
other object. Use Entire(ly) to test whether the whole object is inside another object. Use Part(ly) to
test whether any part of an object is within the other object.

The next statement selects all sections of a highway with any part going through a county:

Select * From highway
Where obj Partly Within countyobj

The Partly Within operator tests whether any portion of the first object is within the other object or
touching it at any point. You also can use the Entirely Within operator to test if all of an object is
within the area of another object. Since checking all of the segments of an object involves more
calculations than checking only the centroid, conditions that involve the Partly modifier or the
Entirely modifier evaluate more slowly.

The Intersects operator can be used with all types of objects. If any part of an object crosses,
touches, or is within the other object, the objects intersect. Regions that touch at one corner
intersect. A point on a node of a polyline intersects the polyline, lines that cross intersect, and a point
inside a region intersects that region.

The table below summarizes MapBasic’s geographic operators:

Operator Usage Evaluates TRUE if:

Contains objectA Contains objectB first object contains the centroid of the
second object

Contains Part objectA Contains Part
objectB

first object contains part of the second
object

Contains Entire objectA Contains Entire
objectB

first object contains all of the second
object

Within objectA Within objectB first object’s centroid is within the
second object

Partly Within objectA Partly Within
objectB

part of first object is within the second
object

Entirely Within objectA Entirely Within
objectB

the first object is entirely inside of the
second object

Intersects objectA Intersects objectB the two objects intersect at some point
MapBasic 11.5 189 User Guide

Advanced Geographic Queries
Querying Objects in Tables
You can use MapBasic functions or geographic comparison operators to build queries using the
object column of your table. Building these queries is much like building queries for regular columns,
except that there are no object literals. Instead, queries using objects typically use functions or
comparison operators (for example, Entirely Within) to analyze objects.

The statement below uses the ObjectLen() function to find all the sections of cable greater than
300 meters in length:

Select *
From cable
Where ObjectLen(obj, "m") > 300

The next example calculates the total area of wetlands in Indiana:

Select Sum(Area(obj,"sq mi"))
From wetlands
Where obj Within (Select obj From states Where state = "IN")

The next statement selects all the storage tanks within one kilometer of a well at longitude lon, and
latitude lat:

Set Distance Units "km"
Select * From tanks Where obj Within

CreateCircle(lon,lat, 1)

The statement below creates a selection with employees and the distance they live from an office (in
order of farthest to nearest):

Select
Name, Distance(Centroidx(obj), Centroidy(obj),

office_lon, office_lat, "km")
From employee
Order By 2 Desc

Using Geographic SQL Queries With Subselects
MapBasic allows you to query objects from one table in relation to objects in another table. For
instance, you might want to query a table of doctors to see which ones are in Marion County,
Indiana. Doctors are in one table, counties in another.

One approach is to select a county from the county table, copy the object into a variable, and query
the table of doctors against the object variable. This is how it looks:

Dim mycounty As Object
Select *

From counties
Where name="Marion" and state="IN"

Fetch First From selection
mycounty = selection.obj
Select *

From doctors
Where obj Within mycounty
190 MapBasic 11.5

Chapter 9: Graphical Objects
Advanced Geographic Queries
If you use a subselect in the Where clause instead of the variable mycounty, you can produce the
same results with fewer statements:

Select *
From doctors
Where obj Within

(Select obj From counties Where name="Marion" And state="IN")

Notice that the subselect (the latter select, which appears in parentheses) returns a table with only
one column and one row—the object representing Marion County, Indiana. MapInfo Professional
examines each row in the doctors table to determine whether that row is inside Marion County. The
subselect performs the same function as the variable in the previous example (mycounty), because
it returns the appropriate object to the expression.

To ensure that the subselect returns only the object column, the Select clause of the subselect lists
only one column, obj. The statement will not evaluate properly if there are many columns in the
subselect or if the column isn’t an object column.

Use the Any() operator when the subselect returns multiple rows. The next example shows a
subselect that uses Any() to process a group of rows. It finds all the doctors in counties that have a
per-capita income of less than $15,000. Compare the locations with each county in the subselect.

Select *
From doctors
Where obj Within

Any (Select obj From counties Where inc_pcap < 15000)

Switch the order in the Select statement to select counties instead of doctors. The statement below
finds all the counties that have a doctor specializing in neurology:

Select *
From counties
Where obj Contains

(Select obj From doctors Where specialty = "Neurology")

The following example finds all the states bordering Nebraska:

Select *
From states
Where obj Intersects (Select obj From states Where state = "NE")

Using Geographic Joins
Joins link two tables together by matching, row-for-row, entries in specified columns from two tables.
The result is one table with a combination of columns for both tables with as many rows as there are
matches. MapBasic extends the relational concept of a join with geographic join criteria. For
instance, if you join demographic data with the states map, the resulting table can have all of the
information from the states map as well as the demographic data for each state.

MapInfo Professional supports geographic conditions in the join. For instance, instead of matching
two tables by a numeric ID, you can join tables by matching objects from one table that contain an
object in the second table. This is particularly useful when there is no matching field. You can join all
of the housing projects in a table with their congressional districts without having the congressional
MapBasic 11.5 191 User Guide

Advanced Geographic Queries
district information in the projects table to begin with. Determining the district may be the reason to
perform the join in the first place—to see which projects are in which congressional districts. The
SQL Select statement for that operation is:

Select *
From projects, congdist
Where projects.obj Within congdist.obj

After you have joined the tables geographically, you can use the Update statement to enter the
congressional district names (from the name column) into the projects table (the column cd) as
follows:

Update Selection Set cd = name

The resulting projects table now contains the name of the congressional district for every project.
The following example calculates the total dollars spent on projects in each congressional district:

Select congdist.name, sum(project.amt)
From congdist, project
Where congdist.obj Contains project.obj
Group By 1

Since the table order in the Where clause has changed, use the condition Contains instead of
Within.

Proportional Data Aggregation
The Add Column statement can perform advanced polygon-overlay operations that perform
proportional data aggregation, based on the way one table’s objects overlap another table’s objects.
For example, suppose you have one table of town boundaries and another table that represents a
region at risk of flooding. Some towns fall partly or entirely within the flood-risk area, while other
towns are outside the risk area. The Add Column statement can extract demographic information
from the town-boundaries table, then use that information to calculate statistics within the flood-risk
area. For information about the Add Column statement, see the MapBasic Reference Guide.
192 MapBasic 11.5

10

Advanced Features of
Microsoft Windows
This chapter discusses how a MapBasic application can take advantage of
Windows-specific technology.

Topics n this section:

Declaring and Calling Dynamic Link Libraries (DLLs)194
Creating Custom Button Icons and Draw Cursors199
Inter-Application Communication Using DDE201
Incorporating Windows Help Into Your Application207

Declaring and Calling Dynamic Link Libraries (DLLs)
Declaring and Calling Dynamic Link Libraries (DLLs)
Dynamic Link Libraries, or DLLs, are files that contain executable routines and other resources
(such as custom icons for toolbar buttons). You can use DLLs as libraries of external routines, and
call those routines from your MapBasic program. You can issue a Call statement to a DLL routine,
just as you would use a Call statement to call a MapBasic procedure. There are many DLLs
available from commercial sources. The documentation for a particular DLL should describe the
routines that it contains, its specific name, and any required parameters.

If your MapBasic program calls DLLs, the DLLs must be present at run time. In other words,
if you provide your users with your compiled application (MBX file), you must also provide
your users with any DLLs called by your MBX.

The Windows DLLs are documented in the Windows Software Developer’s Kit (SDK). Third-party
books that describe the standard Windows files are also available.

Specifying the Library
Before your MapBasic program can call a DLL routine, you must declare the DLL through a Declare
statement (just as you use the Declare statement to declare the sub-procedures in your MapBasic
source code). In the Declare statement, you specify the name of the DLL file and the name of a
routine in the library.

Declare Sub my_routine Lib "C:\lib\mylib.dll"
(ByVal x As Integer, ByVal y As Integer)

If you specify an explicit path in your Declare statement (for example, “C:\lib\mylib.dll”), MapInfo
Professional tries to load the DLL from that location. If the DLL file is not in that location, MapInfo
Professional does not load the DLL (possibly causing runtime errors). If your Declare statement
specifies a DLL name without a path (for example, “mylib.dll”), MapInfo Professional tries to locate
the DLL from various likely locations, in the following order:

1. If the DLL is in the same directory as the .MBX file, MapInfo Professional loads the DLL;
otherwise, go to step 2.

2. If the DLL is in the directory where MapInfo Professional is installed, MapInfo Professional loads
the DLL; otherwise, go to step 3.

3. If the DLL is in the Windows\System directory, MapInfo Professional loads the DLL; otherwise,
go to step 4.

4. If the DLL is in the Windows directory, MapInfo Professional loads the DLL; otherwise, go to step
5.

5. MapInfo Professional searches for the DLL along the user’s system search path.

MapInfo Professional follows the same search algorithm when loading bitmap icon and cursor
resources from DLLs.
194 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Declaring and Calling Dynamic Link Libraries (DLLs)
Passing Parameters
Many DLLs take parameters; for example, the example above shows a Declare statement for a DLL
routine that takes two parameters.

MapBasic can pass parameters two ways: By value (in which case MapInfo Professional copies the
arguments onto the stack), or by reference (in which case MapInfo Professional puts the address of
your MapBasic variable on the stack; the DLL then can modify your MapBasic variables). For an
introduction to the conceptual differences between passing parameters by reference vs. by value,
see MapBasic Fundamentals.

To pass a parameter by value, include the ByVal keyword in the Declare statement (as shown in the
example above). If you omit the ByVal keyword, the argument is passed by reference.

The following MapBasic data types may not be passed by value: Arrays, custom data types (i.e.,
structures), and aliases. Fixed-length string variables may be passed by value, but only if the DLL
treats the parameter as a structure. See String Arguments, below.

Calling Standard Libraries
The next example shows how a MapBasic program can reference the MessageBeep routine in the
standard Windows library known as user.

Declare Sub MessageBeep Lib "user"
(ByVal x As SmallInt)

Note that this Declare statement refers to the library name “user” not “user.dll”. User is the name of
a standard library that is included as part of Windows; other standard Windows library names
include GDI and Kernel.

After you declare a DLL routine using a Declare Sub statement, you can use the Call statement to
call the routine the way you would call any sub-procedure:

Call MessageBeep(1)

Calling a DLL Routine by an Alias
Some DLL routines have names that cannot be used as legal MapBasic identifiers. For example, a
DLL routine’s name might conflict with the name of a standard MapBasic keyword. In this situation,
you can use the Alias keyword to refer to the DLL routine by another name.

The following example shows how you could assign the alias Beeper to the MessageBeep routine in
the User library:

Declare Sub Beeper Lib "user" Alias "MessageBeep"
(ByVal x As SmallInt)

Call Beeper(1)

The name by which you will call the routine—“Beeper” in this example—appears after the
Sub keyword; the routine’s original name appears after the Alias keyword.
MapBasic 11.5 195 User Guide

Declaring and Calling Dynamic Link Libraries (DLLs)
String Arguments

When calling a DLL routine, a MapBasic program can pass variable-length string variables by
reference. If you are writing your own DLL routine in C, and you want MapBasic to pass a string by
reference, define the argument as char * from your C program.

CAUTION: When MapBasic passes a by-reference string argument, the DLL routine can
modify the contents of the string variable. However, DLL routines should not
increase the size of a MapBasic string, even if the string is declared as variable-
length in MapBasic.

A MapBasic program can pass fixed-length string variables by reference or by value. However, if
you pass the argument by value, the DLL routine must interpret the argument as a C structure. For
example, if your MapBasic program passes a 20-character string by value, the DLL could receive
the argument as a structure consisting of five four-byte Integer values.

When a MapBasic program passes a string argument to a DLL, MapInfo Professional automatically
includes a null character (ANSI zero) to terminate the string. MapInfo Professional appends the null
character regardless of whether the MapBasic string variable is fixed-length or variable-length.

If your DLL routine will modify the string argument, make sure that the string is long enough. In other
words, take steps within your MapBasic program, so that the string variable that you pass contains a
sufficiently long string.

For example, if you need a string that is 100 characters long, your MapBasic program could assign a
100-character string to the variable before you call the DLL routine. The MapBasic function
String$() makes it easy to create a string of a specified length. Or you could declare the MapBasic
string variable to be a fixed-length string (for example, Dim stringvar As String * 100 will
define a string 100 bytes long). MapBasic automatically pads fixed-length string variables with
spaces, if necessary, so that the string length is constant.

Array Arguments
MapBasic allows you to pass entire arrays to DLL routines in the same way that you can pass them
to MapBasic sub-procedures. Assuming that a DLL accepts an array as an argument, you can pass
a MapBasic array by specifying the array name with empty parentheses.

User-Defined Types
Some DLLs accept custom data types as parameters. (Use the Type statement to create custom
variable types.) MapBasic passes the address of the first element, and the rest of the elements of
the user-defined type are packed in memory following the first element.

CAUTION: For a DLL to work with custom variable types, the DLL must be compiled with
“structure packing” set to tightest packing (one-byte boundaries). For example,
using the Microsoft C compiler, you can use the /Zp1 option to specify tightest
packing.

Logical Arguments
You cannot pass a MapBasic Logical value to a DLL.
196 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Declaring and Calling Dynamic Link Libraries (DLLs)
Handles
A handle is a unique integer value defined by the operating environment and used to reference
objects such as forms and controls. Operating-environment DLLs use handles to Windows (HWND),
Device Contexts (hDC), and so on. Handles are simply ID numbers and you should never perform
mathematical functions with them.

If a DLL routine takes a handle as an argument, your MapBasic program should declare the
argument as ByVal Integer.

If a DLL function returns a handle as its return value, your MapBasic program must declare the
function’s return value type as Integer.

Example: Calling a Routine in KERNEL
The following example illustrates calling a DLL. The DLL in this example, “kernel”, is a standard
Windows library. This program uses a routine in the kernel library to read a setting from the Windows
configuration file, WIN.INI.

Declare Sub Main
’ Use a Declare Function statement to reference the Windows
’ "kernel" library.
Declare Function GetProfileString Lib "kernel"(

lpszSection As String,
lpszEntry As String,
lpszDefault As String,
lpszReturnBuffer As String,
ByVal cbReturnBuffer As Smallint)

As Smallint

Sub Main
Dim sSection, sEntry, sDefault, sReturn As String
Dim iReturn As Smallint

’ read the "sCountry" setting
’ from the "[intl]" section of WIN.INI.

sReturn = String$(256," ")
sSection = "intl"
sEntry = "sCountry"
sDefault = "Not Found"
iReturn = GetProfileString(sSection, sEntry,

sDefault, sReturn, 256)

’ at this point, sReturn contains a country setting
’ (for example, "United States")
Note "[" + sSection + "]" + chr$(10) + sEntry + "=" + sReturn

End Sub
MapBasic 11.5 197 User Guide

Declaring and Calling Dynamic Link Libraries (DLLs)
The Declare Function statement establishes a reference to the kernel library. Note that the library is
referred to as “kernel” although the actual name of the file is krnl386.exe. Windows uses the correct
library if your program refers to “kernel”. The kernel library receives special handling because it is a
standard part of the Windows API. If you create your own library, your Declare Function statements
should reference the actual name of your DLL file.

If you use DLLs to store custom ButtonPad icons and/or custom draw cursors, you can use the
same basic technique—calling SystemInfo(SYS_INFO_MIPLATFORM)—to determine which DLL
to use. However, the MapBasic syntax is somewhat different: Instead of using a Declare statement,
you reference DLL resources (bitmap icons and cursors) by including a File clause in the Create
ButtonPad statement, as shown in the following example.

Declare Sub Main
Declare Function getDLLname() As String
Declare Sub DoIt

Sub Main
Dim s_dllname As String

s_dllname = getDLLname()

Create ButtonPad "Custom" As
ToolButton Calling doit

Icon 134 File s_dllname
Cursor 136 File s_dllname

End Sub
Function getDLLname() As String

If SystemInfo(SYS_INFO_MIPLATFORM) = MIPLATFORM_WIN32 Then
getDLLname = "..\icons\Test32.DLL"

Else
getDLLname = "..\icons\Test16.DLL"

End If
End Function

Sub DoIt
’this procedure called if the user
’uses the custom button...

End Sub

See Creating Custom Button Icons and Draw Cursors on page 199 for a discussion of creating
custom ButtonPad icons.

Troubleshooting Tips for DLLs
The following tips may help if you are having trouble creating your own DLLs.

• If you are using C++ to create your own DLLs, note that C++ compilers sometimes append extra
characters to the end of your function names. You may want to instruct your C++ compiler to
compile your functions as “straight C” to prevent your function names from being changed.

• The Microsoft 32-bit C compiler provides three calling conventions: Standard (keyword
“__stdcall”), C (keyword “__cdecl”) and fast call (keyword “__fastcall”). If you are creating DLLs
to call from MapBasic, do not use the fast call convention.
198 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Creating Custom Button Icons and Draw Cursors
• If you are having trouble passing custom MapBasic data types (structures) to your DLL, make
sure that your C data structures are “packed” to one-byte boundaries, as discussed above.

• MapBasic can pass arguments by reference (the default) or by value. Note, however, that
passing arguments by value is not standardized among compilers; for example, different
compilers behave differently in the way that they process C-language doubles by value.
Therefore, you may find it more predictable to pass arguments by reference. When you pass an
argument by reference, you are passing an address; the major compilers on the market are
consistent in their handling of addresses.

• It is good programming to make your DLLs “self-contained.” In other words, each DLL routine
should allocate whatever memory it uses, and it should free whatever memory it allocated.

• It is important to set up your MapBasic Declare statement correctly, so that it declares the
arguments just as the DLL expects the arguments. If a DLL routine expects arguments to be
passed by value, but your program attempts to pass the arguments by reference, the routine
may fail or return bad data.

Creating Custom Button Icons and Draw Cursors
The MapBasic language lets you control and customize MapInfo Professional’s ButtonPads, which
are an important part of MapInfo Professional’s user interface. For an introduction to how MapBasic
can control ButtonPads, see Creating the User Interface.

A small picture (an icon) appears on each button. You may want to create your own custom icons to
go with the custom buttons that you create. The process of creating custom icons varies from
platform to platform. On Windows, custom ButtonPad icons are stored as BMP resources in DLL
files.

A MapBasic program also can use custom cursors (the shapes that moves with the mouse as you
click and drag in a Map or Layout window). This section discusses the process for creating custom
cursors for Windows.

Reusing Standard Icons
Before you go about creating your own custom button icons, take a moment to familiarize yourself
with the icons that are built into MapInfo Professional. Starting with version 4.0, MapInfo
Professional includes a wide assortment of custom icons. These icons are provided to make it easier
for MapBasic developers to create custom buttons.

To see a demonstration of the built-in icons, run the sample program Icon Sampler
(ICONDEMO.MBX). The following picture shows one of the ButtonPads created by the Icon
Sampler.
MapBasic 11.5 199 User Guide

Creating Custom Button Icons and Draw Cursors
Each of the icons built into MapInfo Professional has a numeric code. For a listing of the codes, see
ICONS.DEF. To see an individual button’s code, run ICONDEMO.MBX, and place the mouse cursor
over a button; the button’s ToolTip shows you the button’s code.

If none of MapInfo Professional’s built-in icons are appropriate for your application, you will want to
create custom icons, as described in the following pages.

Custom Icons
To create custom icons for MapInfo Professional, you need a resource editor. The MapBasic
development environment does not include its own resource editor; however, MapBasic programs
can use the resources that you create using third-party resource editors. For example, you could
create custom icons using AppStudio (the resource editor that is provided with Microsoft Visual C).

On Windows, custom icons are stored in a DLL file. Before you begin creating custom icons, you
should develop or acquire a DLL file where you intend to store the icons. This DLL file can be a
“stub” file (i.e., a file that does not yet contain any useful routines).

You must create two bitmap resources for each custom icon. The first bitmap resource must be 18
pixels wide by 16 pixels high; this is the icon that will appear if the user does not check the Large
Buttons check box in MapInfo Professional’s Toolbar Options dialog box. The second bitmap
resource must be 26 pixels wide by 24 pixels tall; this is the icon that will appear if the user does
check the Large Buttons check box. You must create both resources.

The process of creating custom bitmaps involves the following steps:

• Acquire or develop the DLL file where you will store your custom icons.
• Edit the DLL using a resource editor, such as AppStudio.
• For each icon you wish to create, add two bitmap (BMP) resources: one bitmap that is 18 wide

by 16 high, and another bitmap that is 26 wide by 24 high (in pixels).

You must create bitmap resources, not icon resources.

• Assign sequential ID numbers to the two bitmap resources. For example, if you assign an ID of
100 to the 18 x 16 bitmap, assign an ID of 101 to the 26 x 24 bitmap.
Once you have created the pair of bitmap resources, you can incorporate your custom bitmaps
into your MapBasic application using either a Create ButtonPad or an Alter ButtonPad
statement. In your program, refer to the ID of the smaller (18 x 16) bitmap resource. For
example, if you assigned the IDs 100 and 101 to your bitmap resources, your program should
refer to ID 100, as shown in the following statement:

Alter ButtonPad "Tools"
Add PushButton

Icon 100 File "MBICONS1.DLL"
HelpMsg "Add new record"
Calling new_route

Show

The DLL file where you store your custom icons (in this example, MBICONS1.DLL) must be installed
on your user’s system, along with the .MBX file. The DLL file can be installed in any of the following
locations:
200 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Inter-Application Communication Using DDE
• The directory where the .MBX file is located;
• the directory where the MapInfo Professional software is installed;
• the user’s Windows directory;
• the system directory within the Windows directory;
• or anywhere along the user’s search path.

If you place the DLL in any other location, your MapBasic program must specify the directory path
explicitly (for example, Icon 100 File "C:\GIS\MBICONS1.DLL"). Note that the
ProgramDirectory$() and ApplicationDirectory$() functions can help you build directory paths
relative to the MapInfo Professional directory or relative to the directory path where your MBX is
installed.

Custom Draw Cursors for Windows
The process of creating custom draw cursors is similar to the process of creating custom icons.
However, draw cursors have some attributes that do not apply to icons (for example, each draw
cursor has a “hot spot”).

To create custom draw cursors, use a resource editor to store CURSOR resources in a DLL. You
can store CURSOR resources and BMP resources in the same DLL file.

Inter-Application Communication Using DDE
Inter-Process Communication, or IPC, is the generic term for the exchange of information between
separate software packages. Windows supports IPC through the Dynamic Data Exchange protocol,
commonly known as DDE.

If two Windows applications both support DDE, the applications can exchange instructions and data.
For instance, a DDE-capable Windows package, such as Microsoft Excel, can instruct MapInfo
Professional to carry out tasks (for example, Map From World).

Overview of DDE Conversations
A DDE conversation is a process that can take place between two Windows applications. Both
applications must be running, and both must support DDE conversations. A single DDE
conversation can involve no more than two applications; however, MapInfo Professional can be
involved in multiple conversations simultaneously.

In a conversation, one application is active; it begins the conversation. This application is called the
client. The other, passive application is called the server. The client application takes all initiative; for
instance, it sends instructions and queries to the server application. The server reacts to the
instructions of the client.
MapBasic 11.5 201 User Guide

Inter-Application Communication Using DDE
How MapBasic Acts as a DDE Client
The MapBasic language supports the following statements and functions that allow a MapBasic
application to act as the client in a DDE conversation.

Refer to the MapBasic Reference Guide or online Help for detailed information on these statements
and functions.

To initiate a DDE conversation, call the DDEInitiate() function. DDEInitiate() takes two
parameters: an application name, and a topic name.

Typically, the application parameter is the name of a potential server application (for example, Excel
is the DDE application name of Microsoft Excel). The list of valid topic parameters varies depending
of the application. Often, the topic parameter can be the name of a file or document currently in use
by the server application.

For instance, if Excel is currently editing a worksheet file called TRIAL.XLS, then a MapBasic
application can initiate a conversation through the following statements:

Dim channelnum As Integer
channelnum = DDEInitiate("Excel", "TRIAL.XLS")

In this example, Excel is the application name, and TRIAL.XLS is the topic name.

Many DDE applications, including MapInfo Professional, support the special topic name System.
You can use the topic name System to initiate a conversation, then use that conversation to obtain a
list of the available topics.

Each DDE conversation is said to take place on a unique channel. The DDEInitiate() function
returns an integer channel number. This channel number is used in subsequent DDE-related
statements.

Once a conversation has been initiated, the MapBasic application can send commands to the server
application by issuing the DDEExecute statement. For instance, a MapBasic application could
instruct the server application to open or close a file.

MapBasic Statement or Function Action

DDEInitiate() Opens a conversation.

DDERequest$() Requests information from the server application.

DDEPoke Sends information to the server application.

DDEExecute Instructs the server application to perform an action.

DDETerminate Closes a DDE conversation.

DDETerminateAll Closes all DDE conversations which were opened by the
same MapBasic program.
202 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Inter-Application Communication Using DDE
A MapBasic application can request information from the server application by calling the
DDERequest$() function. When calling DDERequest$(), you must specify an item name. A DDE
item name tells the server application exactly what piece of information to return. If the server
application is a spreadsheet, the item name might be a cell name.

Use the DDEPoke statement to send information to the server. Generally, when a MapBasic
application pokes a value to the server application, the value is stored in the appropriate document,
as if it had been entered by the user. The following example shows how a MapBasic program can
store the text “NorthEast Territory” in a cell in the DDE server’s worksheet.

DDEPoke channelnum, "R1C2", "NorthEast Territory"

Once a DDE conversation has completed its task, the MapBasic (client) application should terminate
the conversation by issuing a DDETerminate or DDETerminateAll statement. DDETerminate
closes one specific DDE conversation; DDETerminateAll closes all open DDE conversations that
were opened by that same application. Multiple MapBasic applications can be in use at one time,
with each application conducting its own set of DDE conversations.

When a MapBasic application acts as a DDE client, the application may generate runtime errors if
the server application “times-out” (does not respond to the client’s actions within a certain amount of
time).

MapInfo Professional stores the time-out setting in the Windows registry For more details about how
MapInfo Professional stores settings in the registry, search for “registry” in the MapBasic online Help
index.

How MapInfo Professional Acts as a DDE Server
MapInfo Professional acts as the server when another Windows application initiates the DDE
conversation. This allows the client application to read from MapBasic global variables and even
poke values into MapBasic global variables. The DDE client can also perform execute operations to
run MapBasic statements; for example, the client could use DDE execute functionality to issue a
MapBasic Map statement. (However, the client cannot issue MapBasic flow-control statements.)

Other software packages do not necessarily provide the same set of DDE statements that MapBasic
provides. While MapBasic provides a DDEPoke statement, other packages may provide the same
functionality under a different name. To learn what DDE statements are provided by a particular
Windows application, refer to the documentation for that application.

Any application that acts as a DDE client must address the three basic DDE parameters: application,
topic, and item.

Application name: Specify MapInfo Professional as the application name to initiate a DDE
conversation with MapInfo Professional as the server.

Topic name: Specify System or specify the name of a MapBasic application that is currently running
(for example, SCALEBAR.MBX).

Item name: The item name that you specify depends on the topic you use. If you use MapInfo
Professional as the application name and System as the topic name, you can use any item name
from the table below.
MapBasic 11.5 203 User Guide

Inter-Application Communication Using DDE
The following table shows the actions and items supported by a DDE conversation with Application
as MapInfo and Topic as System.

For example, the following MapBasic program⎯which you can type directly into the MapBasic
window⎯conducts a simple DDE conversation using “MapInfo” as the application and “System” as
the topic.

Dim i_channel As Integer
i_channel = DDEInitiate("MapInfo", "System")
Print DDERequest$(i_channel, "Version")
DDETerminate i_channel

The DDEInitiate() function call initiates the DDE conversation. Then the DDERequest$() function
performs a peek request, using “Version” as the item name.

DDE action DDE item name Effect

Peek request “SysItems” MapInfo Professional returns a TAB-separated list of
item names accepted under the System topic.
Topics SysItems Formats Version

Peek request “Topics” MapInfo Professional returns a TAB-separated list of
currently available topics (System, and the names of
all running MapBasic applications).

Peek request “Formats” MapInfo Professional returns a list of all Clipboard
formats supported by MapInfo Professional (TEXT).

Peek request “Version” MapInfo Professional returns a text string representing
the MapInfo Professional version number, multiplied
by 100. For example, MapInfo Professional 11.5.0
returns “1150". See example below.

Peek request A MapBasic expression MapInfo Professional interprets the string as a
MapBasic expression and returns the value as a string.
If expression is invalid, MapInfo Professional returns
an error. This functionality applies to MapInfo
Professional 4.0 and higher.

Execute A text message MapInfo Professional tries to execute the message as
a MapBasic statement, as if the user had typed the
statement into the MapBasic window. The statement
cannot contain calls to user-defined functions,
although it can contain calls to standard functions. The
statement cannot reference variables that are defined
in compiled applications (.MBX files). However, the
statement can reference variables that were defined
by executing Dim statements into the MapBasic
window.
204 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Inter-Application Communication Using DDE
If you use the name of a running MapBasic application (for example, “C:\MB\SCALEBAR.MBX”, or
“SCALEBAR.MBX”, or “SCALEBAR”) as the DDE topic name, you can use any item name from the
table below.

The following table shows the actions and items supported by a DDE conversation with Application
as MapInfo and Topic as the name of a running MapBasic application.

For example, the following MapBasic program ⎯ which you can type directly into the MapBasic
window ⎯ conducts a simple DDE conversation using “SCALEBAR.MBX” as the topic. This
conversation prints a list of the global variables used by SCALEBAR.MBX.

This conversation will only work if the application SCALEBAR.MBX is already running.

Dim i_channel As Integer
i_channel = DDEInitiate("MapInfo", "SCALEBAR.MBX")
Print DDERequest$(i_channel, "{items}")
DDETerminate i_channel

How MapInfo Professional Handles DDE Execute Messages
There are two ways that the client application can send MapInfo Professional an execute message:

• When a conversation uses “System” as the topic, and the client application sends an execute
message, MapInfo Professional tries to execute the specified message as a MapBasic
statement.

DDE action DDE item name Effect

Peek request “{items}” MapInfo Professional returns a TAB-separated
list of the global variables defined by the running
application. See example below.

Peek request The name of a global variable MapInfo Professional returns a string
representing the value of the variable.

Peek request A string that is not the name of
a global variable

If the MapBasic application has a function called
RemoteQueryHandler(), MapInfo Professional
calls the function. The function can determine
the item name by calling
CommandInfo(CMD_INFO_MSG).

Poke The name of a global variable MapInfo Professional stores the new value in
the variable.

Execute A text message If the MapBasic application has a procedure
called RemoteMsgHandler, MapInfo
Professional calls the procedure. The procedure
can determine the text message by calling
CommandInfo(CMD_INFO_MSG).
MapBasic 11.5 205 User Guide

Inter-Application Communication Using DDE
• When a conversation uses the name of a MapBasic application as the topic, and the client sends
an execute message, MapInfo Professional calls the application’s RemoteMsgHandler
procedure, which can then call CommandInfo() to determine the text of the execute message.

A MapBasic application can act as the client in one DDE conversation, while acting as the server in
another conversation. A MapBasic application can initiate a conversation with another MapBasic
application, or with MapInfo Professional itself.

Communicating With Visual Basic Using DDE
Many MapBasic programmers use Microsoft’s Visual Basic language to enhance their MapBasic
applications. You might use Visual Basic to create elaborate dialog boxes that would be difficult to
create using the MapBasic Dialog statement. For example, a Visual Basic program can create
custom controls that are not available through MapBasic’s Dialog statement.

MapBasic applications can communicate with Visual Basic applications using DDE (or using OLE
Automation). For more information about communicating with Visual Basic applications, see
Integrated Mapping.

Examples of DDE Conversations
For an example of using DDE to read and write values of cells in a Microsoft Excel worksheet, see
DDEInitiate() in the MapBasic Reference Guide or online Help.

The sample program, AppInfo (APPINFO.MBX), provides a more complex DDE example. The
AppInfo program is a debugging tool. If you run your MapBasic application, and then you run
AppInfo, you can use AppInfo to monitor the global variables in your MapBasic program. The
WhatApps() procedure queries the DDE item name “Topics” to retrieve the list of running MBX files.
The WhatGlobals() procedure conducts another DDE conversation, using the “{Items}” item name
to retrieve the list of global variable names.

DDE Advise Links
When MapInfo Professional acts as a server in a DDE conversation, the conversation can support
both warm and hot advise links. In other words, when a Windows application initiates a DDE
conversation that monitors the values of MapBasic global variables, Windows is able to notify the
DDE client when and if the values of the MapBasic global variables change.

When a MapBasic application acts as a client in a DDE conversation, there is no mechanism for
creating an advise link.
206 MapBasic 11.5

Chapter 10: Advanced Features of Microsoft Windows
Incorporating Windows Help Into Your Application
Incorporating Windows Help Into Your Application
If you are developing a complex application, you may want to develop an online help file that
explains the application. To create a help file, you need a help compiler. The MapBasic development
environment does not include a help compiler. However, if you already own a Windows help
compiler, and you use it to create a Windows help file, you can control the help file through a
MapBasic application.

Pitney Bowes Software Inc.’s Technical Support staff cannot assist you with the creation of
on-line help files.

Within your program, you can control the Help window by using the Open Window, Close Window,
and Set Window statements. The following statement opens the Help window, showing the
Contents screen of the MapInfo Professional help file:

Set Window Help Contents

The Set Window statement has many uses; see the MapBasic Reference Guide for details. Most
forms of the Set Window statement require an Integer window identifier, but if you specify the Help
keyword, you should omit the Integer identifier—there is only one Help window.

If you create a custom help file, and call the file Dispatch.hlp, the following statement displays your
help file in the Help window:

Set Window Help File "C:\MAPINFO\DISPATCH.HLP"

The following statement sets the Help window so that it displays the help screen that has 500 as its
context ID number:

Set Window Help ID 500

Context ID numbers (such as 500 in the preceding example) are defined in the [MAP] section of a
help file’s Project file (for example, filename.hpj). For more information about the architecture of a
Windows help file, see the documentation for the Windows Software Developers Kit (SDK).

If you want to provide a help screen for a specific dialog box in your application, place a Button
control in the dialog box, and assign the Button a title called “Help.”

Control Button
Title "Help"
Calling show_help_sub

Assign the Help Button control a handler procedure, and have the handler procedure issue a Set
Window statement. The user will be able to obtain help for the dialog box by clicking the Help
button. For more information about assigning handler procedures to dialog box controls, see
Creating the User Interface.
MapBasic 11.5 207 User Guide

Incorporating Windows Help Into Your Application
208 MapBasic 11.5

11

Integrated Mapping
You can control MapInfo Professional using programming languages other than
MapBasic. For example, if you know how to program in Visual Basic, you can
integrate a MapInfo Professional Map window into your Visual Basic application,
while doing most—maybe even all—of your programming in Visual Basic. This
type of application development is known as Integrated Mapping, because you
are integrating elements of MapInfo Professional into another application.

If you already know how to program in other programming languages, such as
C or Visual Basic, you will find that Integrated Mapping provides the easiest way
to integrate MapInfo Professional windows into non-MapBasic applications.

If you are interested in using .Net to create integrated mapping
applications, see Integrated Mapping in .Net on page 269.

Topics in this section:

What Does Integrated Mapping Look Like?.210
Conceptual Overview of Integrated Mapping 210
Technical Overview of Integrated Mapping211
A Short Sample Program: “Hello, (Map of) World”212
A Closer Look at Integrated Mapping. .213
Using Callbacks to Retrieve Info from MapInfo Professional . .221
Alternatives to Using OLE Callbacks .225
Related MapBasic Statements and Functions.228
OLE Automation Object Models .230
MapInfo Professional Command-Line Arguments 246
Adding Toolbar Buttons and Handlers. .250
Learning More. .254

What Does Integrated Mapping Look Like?
What Does Integrated Mapping Look Like?
You control the appearance of the Integrated Mapping application. If you want, you can create a
user interface that is radically different from the MapInfo Professional user interface. For example,
the following picture shows the FindZip application (a sample Visual Basic application that integrates
a MapInfo Professional Map window into a Visual Basic form).

When you integrate a map into your program, the user sees a genuine MapInfo Professional Map
window—not a bitmap, metafile, or any other type of snapshot. You can allow the user to interact
with the map (for example, using the Zoom tools to magnify the map). An integrated Map window
has all of the capabilities of a Map window within MapInfo Professional.

When the user runs an Integrated Mapping application, the MapInfo Professional “splash
screen” (the image that ordinarily displays while MapInfo Professional is loading) does not
appear.

Conceptual Overview of Integrated Mapping
To create an Integrated Mapping application, you write a program—but not a MapBasic program.
Integrated Mapping applications can be written in several languages. The most often-used
languages are C and Visual Basic. The code examples in this chapter use Visual Basic.

Within your program, you issue a statement to launch MapInfo Professional in the background. For
example, if you are using Visual Basic, you could launch MapInfo Professional by calling Visual
Basic’s CreateObject() function. MapInfo Professional launches silently in the background, without
displaying a splash screen.
210 MapBasic 11.5

Chapter 11: Integrated Mapping
Technical Overview of Integrated Mapping
Your program manipulates MapInfo Professional by constructing strings that represent MapBasic
statements, using OLE Automation (or DDE, if you prefer) to send the strings to MapInfo
Professional. MapInfo Professional executes the statements as if you had typed the statements into
the MapBasic window.

If you want to open a Map window, use MapBasic’s Map From statement, just as you would in a
conventional MapBasic program. But in an Integrated Mapping application, you also issue additional
statements (for example, Set Next Document Parent) to make the Map window become a child
window of your application. This process is known as “reparenting” the window. You can reparent
Map, Browse, Graph, Layout, and Legend windows.

Reparenting MapInfo Professional’s windows into another application does not give MapInfo
Professional access to the other application’s data. Before you can display data in a MapInfo
Professional window, you must store the data in a MapInfo table.

This illustration shows the major elements of an Integrated Mapping application:

Note that the compiled MapBasic program (.MBX) element is optional. For some applications, you
might not need to create a compiled MapBasic program. However, if you have already written
MapBasic programs, you can continue to use your existing MapBasic code as part of an Integrated
Mapping solution.

Technical Overview of Integrated Mapping

System Requirements
• Integrated Mapping requires MapInfo Professional 4.0 or later. You may use a full copy of

MapInfo Professional or MapInfo runtime (a special “stripped-down” version of MapInfo
Professional, sold only as the base for custom applications).
MapBasic 11.5 211 User Guide

A Short Sample Program: “Hello, (Map of) World”
• Your user’s computer must have enough free memory and system resources to run both your
client program and MapInfo Professional simultaneously.

• Your client program (for example, your Visual Basic program) must be able to act as an OLE
Automation controller or as a DDE client. OLE Automation is strongly recommended, because it
is faster and more reliable than DDE. Automation also provides better error reporting than DDE.
MapInfo Professional uses OLE properties to report runtime error codes; if you use DDE instead
of OLE, you cannot retrieve runtime error codes.

• Your client program must be able to create a user-interface element (for example, a window,
form, or control) as a place-holder for where the map will go. Your client program must also be
able to determine the Windows HWND value of the user-interface element.
For example, in Visual Basic you can place a PictureBox control on a form. When you send a
command to MapInfo Professional, telling the application to create a map inside the PictureBox,
you must specify the PictureBox’s HWND.

Other Technical Notes
• To develop an Integrated Mapping application, you must write a program in a language other

than MapBasic. (We refer to this program as the client program.) You can write the client
program using various popular development products, such as C/C++, Visual Basic (3.0 or later),
PowerBuilder, or Delphi.

• Integrated Mapping uses OLE Automation, but does not use OLE Embedding. When you want to
place a MapInfo Professional Map window into your application, you do not embed it; instead,
you “reparent” the window by sending MapInfo Professional a series of command strings. The
end result is that MapInfo Professional windows appear to the user as child windows of your
application.

• Integrated Mapping does not involve VBX controls or OCX controls. The MapInfo Professional
software does include some DLLs, but you do not call those DLLs directly; those DLLs are used
internally by MapInfo Professional.

A Short Sample Program: “Hello, (Map of) World”
The following Visual Basic example will give you a sense of how easy it is to integrate MapInfo
Professional windows into another application.

Create a new Visual Basic project. In the project’s General Declarations procedure, declare an
Object variable. (In this example, we will name the variable mi, but you can use any variable name
you like.)

Dim mi As Object

Next, add statements to the Form_Load procedure, so that the procedure looks like this:

Sub Form_Load()
Set mi = CreateObject("MapInfo.application")
mi.do "Set Application Window " & Form1.hWnd
mi.do "Set Next Document Parent " & Form1.hWnd & " Style 1"
mi.do "Open Table ""World"" Interactive Map From World"
mi.RunMenuCommand 1702
mi.do "Create Menu ""MapperShortcut"" ID 17 As ""(-"" "

End Sub
212 MapBasic 11.5

Chapter 11: Integrated Mapping
A Closer Look at Integrated Mapping
When you run this Visual Basic program, it launches MapInfo Professional in the background, and
creates a Map window. The Map window behaves as a child window of the Visual Basic program.
The following sections provide detailed explanations of each step in the Integrated Mapping
process.

A Closer Look at Integrated Mapping
The following section explains how to integrate elements of MapInfo Professional into a Visual Basic
application. This discussion is written with two assumptions:

• You should already understand the basic terms and concepts of Windows programming. For
example, you should know what a “child window” is. For background information on the concepts
of Windows programming, see the documentation for your programming language.

• You should already know how to program in Visual Basic, because the code examples in this
discussion use Visual Basic syntax. However, even if you are not a Visual Basic developer, you
should read this section anyway. The basic concepts and procedures discussed in this section
also apply to other programming languages.

Starting MapInfo Professional

To start a unique instance of MapInfo Professional, call Visual Basic’s CreateObject() function, and
assign the return value to a Visual Basic Object variable.

You may want to make the Object variable global, otherwise, the MapInfo object is released
when you exit the local procedure.)

For example, if you named your Object variable “mapinfo” then the following statement launches
MapInfo Professional:

Set mapinfo = CreateObject("MapInfo.Application")

To attach to a previously-running instance of MapInfo Professional which was not launched by a
Visual Basic CreateObject() call, use Visual Basic’s GetObject() function.

Set mapinfo = GetObject(, "MapInfo.Application")

If you are working with a MapInfo runtime instead of a full copy of MapInfo Professional,
specify “MapInfo.Runtime” instead of “MapInfo.Application”. Note that a MapInfo runtime and
a full copy of MapInfo Professional can run simultaneously.

The Visual Basic CreateObject() and GetObject() functions use OLE Automation to connect to
MapInfo Professional. If you need to use DDE rather than OLE, use Visual Basic’s Shell() function
to start MapInfo Professional, and then use the LinkMode property to establish the DDE connection.

Under Window, multiple instances of MapInfo Professional can be running simultaneously. If you
launch MapInfo Professional, and then launch an Integrated Mapping application that calls Visual
Basic’s CreateObject() function, two separate instances of MapInfo Professional will be running.
MapBasic 11.5 213 User Guide

A Closer Look at Integrated Mapping
Sending Commands to MapInfo Professional
After launching MapInfo Professional, construct text strings that represent MapBasic statements.
For example, if you want MapInfo Professional to execute a MapBasic Open Table statement, you
might construct the following string (within Visual Basic):

msg = "Open Table ""STATES.TAB"" Interactive "

If you connected to MapInfo Professional using OLE Automation, send the command string to
MapInfo Professional by using the Do method. For example:

mapinfo.Do msg

When you use the Do method, MapInfo Professional executes the command string as if you had
typed the command into the MapBasic window.

If you connected to MapInfo Professional using DDE, send the command string to MapInfo
Professional by using the DDE LinkExecute method.

Querying Data from MapInfo Professional
To query the value of a MapBasic expression, construct a string that represents the expression. For
example, if you want to determine the value returned by the MapBasic function call WindowID(0),
construct the following string (within Visual Basic):

msg = "WindowID(0)"

If you connected to MapInfo Professional using OLE Automation, send the expression string to
MapInfo Professional by using the Eval OLE method. For example:

Dim result As String
result = mapinfo.Eval "WindowID(0)"

When you use the Eval method, MapInfo Professional interprets the string as a MapBasic
expression, determines the value of the expression, and returns the value, as a string.

If the expression has a Logical value, MapInfo Professional returns a one-character string,
“T” or “F”.

If you connected to MapInfo Professional using DDE, query the value by using the DDE LinkRequest
method.

Reparenting MapInfo Professional Windows

After you launch MapInfo Professional, use the MapBasic statement Set Application Window so
that MapInfo Professional dialog boxes and error messages are owned by your client program. (In
the following statement, “FormName” is the name of a form in Visual Basic.)

msg = "Set Application Window " & FormName.hWnd
mapinfo.Do msg

Then, whenever you want to integrate a MapInfo Professional window into the Visual Basic
application, send MapInfo Professional a Set Next Document statement, followed by the MapBasic
statement that creates the window.
214 MapBasic 11.5

Chapter 11: Integrated Mapping
A Closer Look at Integrated Mapping
For example, the following commands create a MapInfo Professional Map window as a child window
of the Visual Basic program. (“MapFrame” is the name of a PictureBox control in Visual Basic.)

msg = "Set Next Document Parent " & MapFrame.hWnd & " Style 1"
mapinfo.Do msg

msg = "Map From States"
mapinfo.Do msg

The Set Next Document statement lets you “reparent” document windows. Within the Set Next
Document statement, you specify the HWND (handle) of a control in your Visual Basic program.
The next time you create a MapInfo Professional window (using the Map, Graph, Browse, Layout,
or Create Legend statements), the newly-created window is reparented, so that it has your client
program as its parent.

The Set Next Document statement includes a Style clause which controls the type of window you
will create. The example above specifies Style 1 which produces a child window with no border. You
could specify Style 2 to produce a popup window with a half-height title bar (like MapInfo
Professional’s Legend window), or Style 3 to produce a popup window with a full-height title bar.

For each window that you reparent, issue a pair of statements æ a Set Next Document Parent
statement, followed by the statement that creates the window. After you create the window, you may
want to query the value “WindowID(0)” to obtain MapInfo Professional’s Integer Window ID for the
new window. (Many MapBasic statements require that you know the window’s ID.)

mapid = Val(mapinfo.eval("WindowID(0)"))

Note that even after you have reparented a Map window, MapInfo Professional maintains that
window. If part of the window needs to be repainted, MapInfo Professional automatically repaints it.
Therefore, your client program can simply ignore any erase or repaint messages pertaining to the
reparented window.

If you are working in C, you might not be able to ignore erase messages. In this case you should set
your parent window’s style to include the WS_CLIPCHILDREN window style.

Reparenting Legends, Raster Dialog Boxes, and Other Special Windows

MapInfo Professional has several modeless windows, including the Info window, Ruler window,
Message window, the Raster related dialog boxes, and Statistics window. To reparent one of these
special “floating” windows, use MapBasic’s Set Window…Parent statement. For example, the
FindZip sample program uses the following statement to reparent the Info window:

mapinfo.do "Set Window Info Parent " & FindZipForm.hWnd

Note that the process for reparenting the Info window is different than the process for reparenting
Map windows. When reparenting the Info window, you do not use the Set Next Document
statement. The process is different because there is only one Info window, whereas you can have
numerous Map windows.

Legend windows are a special case. Ordinarily, the MapInfo Professional user interface has only
one Legend window, just as it has only one Info window. However, the MapBasic language includes
a Create Legend statement, so that you can create additional Legend windows.
MapBasic 11.5 215 User Guide

A Closer Look at Integrated Mapping
To reparent MapInfo Professional’s standard “one and only” Legend window, use MapBasic’s Set
Window Legend Parent statement.

To create a custom Legend window and reparent it, use MapBasic’s Set Next Document
statement, and then use MapBasic’s Create Legend statement. Note that in this case, you are
creating a Legend that is tied to one specific Map or Graph window. Unlike MapInfo Professional’s
default Legend window, such custom Legend windows do not change when the active window
changes.

You can make a legend float inside a Map window. In the Set Next Document statement, specify
the Map window’s HWND as the parent. The legend becomes a frame “trapped” within the Map
window. For an example of this technique, see the sample program FindZip.

Opening the Table List, Layer Control, or Move Map To windows

In integrated mapping applications, opening the Table List or Layer Control windows shows their
respective dialog version. Since there is no dialog version of the Move Map To window, nothing
happens when opening this window in an integrated mapping application.

Allowing the User to Resize a Map Window

Whether the user is able to resize the Map window depends on how you set up your application. The
sample program, FindZip, places a Map window in a Visual Basic PictureBox control, so that it
cannot be resized. However, you could reparent a Map window using an MDI interface, which allows
the user to resize the window.

When the user resizes the Map window, MapInfo Professional does not automatically reset
the map’s contents to fill the new window size. Therefore, if your application allows the user
to resize the Map window, you must call the Windows API function MoveWindow to make the
Map window conform to the new size.

For example, you can use the following Visual Basic Declare statement to access the MoveWindow
API function:

Declare Function MoveWindow Lib "user32" _
(ByVal hWnd As Long, _
ByVal x As Long, ByVal y As Long, _
ByVal nWidth As Long, ByVal nHeight As Long, _
ByVal bRepaint As Long) As Long

When the user resizes the Map window, call MoveWindow. In Visual Basic, a resize event triggers
the Form_Resize() procedure; you could call MoveWindow from within that procedure, as shown in
the following example.

Dim mHwnd As Long
mHwnd = Val(mapinfo.Eval("WindowInfo(FrontWindow(),12)"))
MoveWindow mHwnd, 0, 0, ScaleWidth, ScaleHeight, 0

The number 12 corresponds to the MapBasic identifier WIN_INFO_WND.
216 MapBasic 11.5

Chapter 11: Integrated Mapping
A Closer Look at Integrated Mapping
ScaleWidth and ScaleHeight are properties of a Visual Basic form, representing the form’s current
width and height.

The ScaleMode property must be set to Pixels, so that ScaleWidth and ScaleHeight
represent pixel measurements.

Integrating MapInfo Professional Toolbar Buttons

You cannot re-parent MapInfo Professional’s ButtonPads (toolbars). If you want your client program
to have toolbar buttons, you must create the buttons in the language you are using. For example, if
you are using Visual Basic, you must create your toolbar buttons using Visual Basic.

If you want a Visual Basic toolbar button to emulate a standard MapInfo Professional button, use
MapInfo Professional’s RunMenuCommand method. (This method has the same effect as the
MapBasic Run Menu Command statement.) For example, the FindZip sample program has an
InfoTool_Click procedure, which issues the following statement:

mapinfo.RunMenuCommand 1707

When the user clicks the Visual Basic control, the FindZip program calls MapInfo Professional’s
RunMenuCommand method, which activates tool number 1707 (MapInfo Professional’s Info tool).
As a result of the method call, MapInfo Professional’s Info tool becomes the active tool.

The “magic number” 1707 refers to MapInfo Professional’s Info tool. Instead of using magic
numbers, you can use identifiers that are more self-explanatory. MapBasic defines a standard
identifier, M_TOOLS_PNT_QUERY, which has a value of 1707. Thus, the following
RunMenuCommand example has the same effect as the preceding example:

mapinfo.RunMenuCommand M_TOOLS_PNT_QUERY

Using identifiers (such as M_TOOLS_PNT_QUERY) can make your program easier to read.
However, if you plan to use identifiers in your code, you must set up your program so that it includes
an appropriate MapBasic header file. If you are using Visual Basic, use the header file
MAPBASIC.BAS. If you are using C, use the header file MAPBASIC.H.

The following table lists the ID numbers for each of MapInfo Professional’s standard tool buttons.
The codes in the third column appear in MAPBASIC.BAS (for Visual Basic), MAPBASIC.H (for C),
and MENUS.DEF (for MapBasic).

Main Toolbar Buttons Number Identifier Code

Select 1701 M_TOOLS_SELECTOR

Marquee Select 1722 M_TOOLS_SEARCH_RECT

Radius Select 1703 M_TOOLS_SEARCH_RADIUS

Boundary Select 1704 M_TOOLS_SEARCH_BOUNDARY

Zoom In 1705 M_TOOLS_EXPAND
MapBasic 11.5 217 User Guide

A Closer Look at Integrated Mapping
You also can create custom drawing-tool buttons, which call your program after being used. For a
general introduction to the capabilities of custom toolbuttons, see Creating the User Interface. For
details on using custom toolbuttons within an Integrated Mapping application, see Using Callbacks
to Retrieve Info from MapInfo Professional.

Customizing MapInfo Professional’s Shortcut Menus
MapInfo Professional displays a shortcut menu if the user right-clicks on a MapInfo Professional
window. These shortcut menus appear even in Integrated Mapping applications. Depending on the
nature of your application, you may want to modify or even eliminate MapInfo Professional’s shortcut
menus. For example, you probably will want to remove the Clone View menu command from the
Map window shortcut menu, because cloning a Map window may not work in an Integrated Mapping
application.

Zoom Out 1706 M_TOOLS_SHRINK

Grabber 1702 M_TOOLS_RECENTER

Info 1707 M_TOOLS_PNT_QUERY

HotLink 1736 M_TOOLS_HOTLINK

Label 1708 M_TOOLS_LABELER

Ruler 1710 M_TOOLS_RULER

Drag Window 1734 M_TOOLS_DRAGWINDOW

Symbol 1711 M_TOOLS_POINT

Line 1712 M_TOOLS_LINE

Polyline 1713 M_TOOLS_POLYLINE

Arc 1716 M_TOOLS_ARC

Polygon 1714 M_TOOLS_POLYGON

Ellipse 1715 M_TOOLS_ELLIPSE

Rectangle 1717 M_TOOLS_RECTANGLE

RoundedRect 1718 M_TOOLS_ROUNDEDRECT

Text 1709 M_TOOLS_TEXT

Frame 1719 M_TOOLS_FRAME

AddNode 1723 M_TOOLS_ADD_NODE

Main Toolbar Buttons Number Identifier Code
218 MapBasic 11.5

Chapter 11: Integrated Mapping
A Closer Look at Integrated Mapping
To remove one or more items from a MapInfo Professional shortcut menu, use MapBasic’s Alter
Menu…Remove statement, or redefine the menu entirely by using a Create Menu statement. For
details, see the MapBasic Reference Guide or online Help.

To add custom items to a MapInfo Professional shortcut menu, use MapBasic’s Alter Menu…Add
statement, and specify the Calling OLE or Calling DDE syntax; see Using Callbacks to Retrieve
Info from MapInfo Professional.

To eliminate a shortcut menu entirely, use the MapBasic statement Create Menu to redefine the
menu, and use the control code “(-” as the new menu definition. For example, the following
statement destroys MapInfo Professional’s shortcut menu for Map windows:

mapinfo.do "Create Menu ""MapperShortcut"" ID 17 As ""(-"" "

Printing an Integrated MapInfo Professional Window

You can use MapBasic’s PrintWin statement to print a MapInfo Professional window, even a
reparented window. For an example, see the FindZip sample program. The FindZip program’s File
menu contains a Print Map command. If the user chooses Print Map, the program executes the
following procedure:

Private Sub Menu_PrintMap_Click()
mapinfo.do "PrintWin"

End Sub

MapBasic’s PrintWin statement prints the map on a single page, with nothing else on the page.

You also can use MapBasic’s Save Window statement to output a Windows metafile (WMF file)
representation of the Map window. For an example, see the FindZip sample program: If the user
chooses Print Form, the program creates a metafile of the map, attaches the metafile to the form,
and then uses Visual Basic’s PrintForm method. The end result is a printout of the form which
includes the metafile of the map.

Detecting Runtime Errors

When your client program sends MapInfo Professional a command string, the command might fail.
For example, the command “Map From World” fails if the World table is not open. MapInfo
Professional generates an error code if the command fails.

To trap a MapInfo Professional error, set up error trapping just as you would for any other OLE
Automation process. In Visual Basic, for example, use the On Error statement to enable error-
trapping.

To determine which error occurred in MapInfo Professional, read MapInfo Professional’s OLE
Automation properties LastErrorCode and LastErrorMessage. For details on these properties, see
OLE Automation Object Models on page 230. For a listing of MapBasic’s error codes, see the text
file ERRORS.DOC.

The LastErrorCode property returns values that are 1000 greater than the error numbers
listed in ERRORS.DOC. In other words, if an error condition would cause a compiled
MapBasic application to produce a runtime error 311, the same error condition would cause
an Integrated Mapping application to set the LastErrorCode property to 1311.
MapBasic 11.5 219 User Guide

A Closer Look at Integrated Mapping
When you run a MapBasic application (MBX file) via Automation, the MBX will not trap its own
runtime errors. You can run an MBX by using the Do method to issue a MapBasic Run Application
statement. However, if a MapBasic runtime error occurs within the MBX, the MBX will halt, even if
the MBX uses the MapBasic OnError statement. If you are building an MBX which you will call via
Automation, try to keep the MBX simple. Within the MBX, avoid using MapBasic’s OnError
statement; instead, do as much error checking and prevention as possible in the controlling
application before running the MBX.

Terminating MapInfo Professional

If you create a new instance of MapInfo Professional by calling Visual Basic’s CreateObject()
function, that instance of MapInfo Professional terminates automatically when you release its Object
variable. If the Object variable is local, it is released automatically when you exit the local procedure.
To release a global Object variable, assign it a value of Nothing:

Set mapinfo = Nothing

If you use DDE to communicate with MapInfo Professional, you can shut MapInfo Professional down
by using the LinkExecute method to send an End MapInfo command string.

Terminating Your Visual Basic Program
If you are creating a 16-bit Visual Basic program that uses DDE to communicate with MapInfo
Professional, make sure you terminate your DDE links before you exit your Visual Basic program. If
you exit your Visual Basic program while DDE links are still active, you may experience undesirable
behavior, including runtime error messages. This problem occurs when you run 16-bit Visual Basic
programs under a 32-bit version of Windows (Windows XP). To avoid this problem, set up your
Visual Basic program so that it terminates its DDE links before it exits.

A Note About MapBasic Command Strings
As shown in the preceding pages, you can create strings that represent MapBasic statements, and
then send the strings to MapInfo Professional by using the Do OLE Method. Note that you can
combine two or more statements into a single command string, as the following Visual Basic
example illustrates. (In Visual Basic, the & character performs string concatenation.)

Dim msg As String

msg="Open Table ""States"" Interactive "
msg=msg & "Set Next Document Parent " & Frm.hWnd & " Style 1 "
msg=msg & "Map From States "

mapinfo.do msg

When parsing the command string at run time, MapInfo Professional automatically detects that the
string contains three distinct MapBasic statements: An Open Table statement, a Set Next
Document statement, and a Map From statement. MapInfo Professional is able to detect the
distinct statements because Open, Set, and Map are reserved keywords in the MapBasic language.
220 MapBasic 11.5

Chapter 11: Integrated Mapping
Using Callbacks to Retrieve Info from MapInfo Professional
Note the space after the keyword Interactive. That space is necessary; without the space, the
command string would include the substring “InteractiveSet” which is not valid MapBasic syntax.
Because each command string ends with a space, MapInfo Professional can detect that Interactive
and Set are separate keywords.

If you combine multiple MapBasic statements into a single command string, make sure you include a
space after each statement, so that MapInfo Professional can detect that the string contains
separate statements.

A Note About Dialog Boxes
In an Integrated Mapping application, the control OKButton will be ineffective in dismissing the
dialog box. Use a regular push-button control and set a variable to determine if the user has clicked
that button.

A Note About Accelerator Keys
In an Integrated Mapping application, MapInfo Professional’s accelerator keys (for example, Ctrl-C
to copy) are ignored. If you want your application to provide accelerator keys, you must define those
accelerators within your client program (for example, your Visual Basic application).

However, Integrated Mapping applications do support pressing the S key to toggle Snap To Node on
or off.

Using Callbacks to Retrieve Info from MapInfo Professional
You can set up your Integrated Mapping application so that MapInfo Professional automatically
sends information to your client program. For example, you can set up your program so that
whenever a Map window changes, MapInfo Professional calls your client program to communicate
the Integer window ID of the window that changed. This type of notification, where an event causes
MapInfo Professional to call your client program, is known as a callback.

• Callbacks allow MapInfo Professional to send information to your client program under the
following circumstances:

• The user interacts with a MapInfo Professional window while using a custom tool. For example, if
the user clicks and drags on a Map window to draw a line, MapInfo Professional can call your
client program to communicate the x- and y-coordinates chosen by the user.

• The user chooses a menu command. For example, suppose your application customizes
MapInfo Professional’s shortcut menus (the menus that appear if the user right-clicks). When the
user chooses a custom command from a shortcut menu, MapInfo Professional can call your
client program to notify your program of the menu event.

• A Map window changes. If the user changes the contents of a Map window (for example, by
adding or removing map layers, or by panning the map), MapInfo Professional can send your
client program the Integer window ID of the window that changed. (This is analogous to
MapBasic’s special handler procedure, WinChangedHandler.)
MapBasic 11.5 221 User Guide

Using Callbacks to Retrieve Info from MapInfo Professional
• The status bar text changes in MapInfo Professional. MapInfo Professional’s status bar does not
appear automatically in Integrated Mapping applications. If you want your client program to
emulate MapInfo Professional’s status bar, you must set up your application so that MapInfo
Professional notifies your client program whenever the status bar text changes.

Technical Requirements for Callbacks
If you plan to use callbacks, your client program must be able to act as a DDE server or as an OLE
Automation server. Visual Basic 4.0 Professional Edition, or later, and C++ can create applications
that are Automation servers. However, applications written using Visual Basic 3.0 cannot act as
Automation servers, so they must use DDE to handle callbacks.

General Procedure for Using OLE Callbacks
The following steps provide an overview of the process of using callbacks through OLE:

1. Using Visual Basic 4.0 or later, C++, or any other language that can act as an OLE server, create
a class definition that defines one or more OLE methods. For details on how to create a class
definition, see the documentation for your programming language.

2. If you want to emulate MapInfo Professional’s status bar, create a method called SetStatusText.
Define this method so that it takes one argument: a string.

3. If you want MapInfo Professional to notify your program each time a Map window changes,
create a method called WindowContentsChanged. Define this method so that it takes one
argument: a four-byte integer.

4. If you want MapInfo Professional to notify your client program whenever custom menu
commands or custom buttons are used, create one or more additional method(s), using
whatever method names you choose. Each of these methods should take one argument: a
string.

5. Create an object using your custom class. For example, if you called the class “CMyClass”, the
following Visual Basic statement creates an object of that class:

Public myObject As New CMyClass

6. After your program launches MapInfo Professional, call MapInfo Professional’s
RegisterCallback method, and specify the name of the object:

mapinfo.RegisterCallback myObject
If you want MapInfo Professional to notify your client program when the user uses a custom
toolbar button, define a custom button (for example, send MapInfo Professional an Alter
ButtonPad…Add statement). Define the custom button so that it uses the syntax Calling OLE
methodname (using the method name you created in step 4).
MapInfo Professional’s toolbars are hidden, like the rest of MapInfo Professional’s user interface.
The user will not see the new custom button. Therefore, you may want to add an icon, button, or
other visible control to your client program’s user interface. When the user clicks on your Visual
Basic icon or button, send MapInfo Professional a Run Menu Command ID statement so that
your custom toolbutton becomes the “active” MapInfo Professional tool.

7. If you want MapInfo Professional to notify your client program whenever the user uses a custom
menu command, define a custom menu command (for example, using the Alter Menu…Add
222 MapBasic 11.5

Chapter 11: Integrated Mapping
Using Callbacks to Retrieve Info from MapInfo Professional
statement to add an item to one of MapInfo Professional’s shortcut menus). Define the custom
menu command so that it uses the syntax Calling OLE methodname (using the method
name you specified in step 4).

8. Within the method(s) that you defined, issue whatever statements are needed to process the
arguments sent by MapInfo Professional.

9. If you created a SetStatusText method, MapInfo Professional sends a simple text string to the
method, representing the text that MapInfo Professional would display on the status bar. If you
want to emulate MapInfo Professional’s status bar, add code to this method to display the text
somewhere in your user interface.

10. If you created a WindowContentsChanged method, MapInfo Professional sends a four-byte
integer (representing a MapInfo Professional window ID number) to indicate which Map window
has changed. Add code to this method to do whatever processing is necessary in response to
the window’s changing. For example, if you are keeping track of the Map window’s current zoom
level, you may want to call MapInfo Professional’s MapperInfo() function to determine the Map
window’s latest zoom level.

11. If you are using methods to handle custom buttons or menu commands, MapInfo Professional
sends a comma-delimited string to your custom method. Within your method, parse the string.
The exact format of the string varies, depending on whether the user used a menu command, a
point-mode drawing tool, a line-mode drawing tool, etc. Processing the Data Sent to a
Callback explains the syntax of the comma-separated string.

Processing the Data Sent to a Callback
Your Integrated Mapping application can create custom MapInfo Professional menu commands and
custom MapInfo Professional toolbar buttons. When the user uses the custom commands or
buttons, MapInfo Professional sends your OLE method a string containing eight elements,
separated by commas. For example, the string sent by MapInfo Professional might look like this:

MI:-73.5548,42.122,F,F,-72.867702,43.025,202,

The contents of the comma-separated string are easier to understand if you are already familiar with
MapBasic’s CommandInfo() function. When you write MBX applications (i.e., programs written in
the MapBasic language and compiled with the MapBasic compiler), you can have your custom
menu commands and custom buttons call MapBasic handler procedures instead of calling OLE
methods. Within a handler procedure, you can call CommandInfo() to determine various
information about recent events. For example, if a MapBasic procedure acts as the handler for a
custom drawing-tool button, the following function call determines whether the user held down the
Shift key while using the drawing tool:

log_variable = CommandInfo(CMD_INFO_SHIFT)

The code CMD_INFO_SHIFT is defined in the MapBasic header file, MAPBASIC.DEF. The
following table lists CommandInfo-related defines, sorted in order of their numeric values.
MapBasic 11.5 223 User Guide

Using Callbacks to Retrieve Info from MapInfo Professional
For an explanation of each code, see CommandInfo() in the MapBasic Reference Guide or online
Help.

When you create a custom menu command or button that uses the Calling OLE methodname
syntax, MapInfo Professional constructs a string with all eight CommandInfo() return values,
separated by commas. The string begins with the prefix MI: so that your OLE server can determine
that the method call was made by MapInfo Professional.

The string that MapInfo Professional sends to your method is constructed in the following manner:

"MI:" +
CommandInfo(1) + "," + CommandInfo(2) + "," +
CommandInfo(3) + "," + CommandInfo(4) + "," +
CommandInfo(5) + "," + CommandInfo(6) + "," +
CommandInfo(7) + "," + CommandInfo(8)

If you assign a unique ID number to each of your custom buttons, you can have all of your buttons
call the same method. Your method can determine which button called it by examining the seventh
argument in the comma-separated string.

Once MapInfo Professional sends the comma-separated string to your method, it is up to you to add
code to your method to parse the string.

Suppose your Integrated Mapping application adds a custom menu command to the MapInfo
Professional shortcut menu. Every time the user chooses that custom menu command, MapInfo
Professional sends your OLE method a comma-separated string. If the custom menu command has
an ID number of 101, the string might look like this:

"MI:,,,,,,,101"

In this case, most of the elements of the comma-separated string are empty, because the
CommandInfo() function can only return one piece of information about menu events (as is
indicated in the table above). Of the eight “slots” in the string, only slot number eight pertains to
menu events.

Value
Codes That Have Meaning

After a Menu Event
Codes That Have Meaning After a

Button Event

1 CMD_INFO_X

2 CMD_INFO_Y

3 CMD_INFO_SHIFT

4 CMD_INFO_CTRL

5 CMD_INFO_X2

6 CMD_INFO_Y2

7 CMD_INFO_TOOLBTN

8 CMD_INFO_MENUITEM
224 MapBasic 11.5

Chapter 11: Integrated Mapping
Alternatives to Using OLE Callbacks
Now suppose you create a custom MapInfo Professional toolbar button that allows the user to click
and drag to draw lines on a map. Every time the user uses that custom drawing tool, MapInfo
Professional sends your OLE method a comma-separated string, which might look like this:

"MI:-73.5548,42.122,F,F,-72.867702,43.025,202,"

In this case, the comma-separated string contains several values, because CommandInfo() is able
to return several pieces of relevant information about toolbutton events. The first two elements
indicate the x- and y-coordinates of the location where the user clicked; the next two elements
indicate whether the user held the Shift and Ctrl keys while clicking; the next two elements indicate
the coordinates of the location where the user released the mouse button; and the last element
indicates the button’s ID number. The final “slot” in the string is empty, because slot number eight
pertains to menu events, not button events.

C/C++ Syntax for Standard Notification Callbacks
The preceding section discussed callbacks in the context of Visual Basic. This section identifies the
specific C-language syntax for MapInfo Professional’s standard callbacks, SetStatusText and
WindowContentsChanged.

If you use MapInfo Professional’s SetCallback method, MapInfo Professional can automatically
generate notification callbacks to your IDispatch object. MapInfo Professional’s standard callbacks
have the following C syntax:

SCODE SetStatusText(LPCTSTR lpszMessage)

MapInfo Professional calls the SetStatusText method whenever the status bar text changes in
MapInfo Professional. The single argument is the string value of the new status bar text.

SCODE WindowContentsChanged(Unsigned Long windowID)

MapInfo Professional calls the WindowContentsChanged method whenever the contents of a
reparented Map window change. The single argument represents MapInfo Professional’s Integer
window ID that identifies which window changed. This callback is analogous to MapBasic’s
WinChangedHandler procedure.

Alternatives to Using OLE Callbacks
As discussed earlier, MapInfo Professional callbacks can use OLE to send information to your client
program. In some cases, however, you may need to set up callbacks that do not use OLE. For
example, if you are developing programs in Visual Basic 3.0, you cannot use OLE for your callbacks,
because Visual Basic 3.0 does not allow you to create your own OLE Automation servers.

MapInfo Professional supports two types of callbacks that are not OLE-dependent: Callbacks using
DDE, and callbacks using compiled MapBasic applications (MBX files).
MapBasic 11.5 225 User Guide

Alternatives to Using OLE Callbacks
DDE Callbacks
When you create custom toolbar buttons or menu commands, you specify a Calling clause. To
handle the callback through DDE, use the syntax Calling DDE server, topic. Whenever the
user uses the custom button or menu command, MapInfo Professional opens a DDE connection to
the DDE server that you designate, and then sends a string to the DDE topic that you designate. The
string uses the format discussed in Processing the Data Sent to a Callback on page 223 (for
example, “MI:……101”).

For an example of a DDE callback, see the sample program FindZip. The Form Load procedure
sends MapInfo Professional an Alter ButtonPad…Add statement to create a custom toolbar
button.

The new toolbutton definition includes the following calling clause:

Calling DDE "FindZip", "MainForm"

Whenever the user clicks on the map using the custom tool, MapInfo Professional opens a DDE
connection to the FindZip application, and then sends a string to the “MainForm” topic. (“MainForm”
is the value of the form’s LinkTopic property.) For an introduction to DDE, see Using the
Development Environment.

MBX Callbacks
If you create a compiled MapBasic application (MBX file), then you can set up your custom buttons
and menu commands so that they call MapBasic procedures in the MBX. In the Calling clause, use
the syntax Calling procedure (where procedure is the name of a procedure in the MapBasic
program). After your Visual Basic application launches MapInfo Professional, run your MBX by
sending MapInfo Professional a Run Application statement. For example:

mapinfo.do "Run Application ""C:\MB\MYAPP.MBX"" "

For an introduction to creating custom buttons and menu commands, see Creating the User
Interface.

Online Help

An Integrated Mapping application can invoke MapInfo Professional dialog boxes by using MapInfo
Professional’s RunMenuCommand OLE method. If your application invokes a MapInfo
Professional dialog box, you can control whether online help is available for the dialog box.
226 MapBasic 11.5

Chapter 11: Integrated Mapping
Alternatives to Using OLE Callbacks
Displaying Standard MapInfo Professional Help
You can allow your users to see the standard MapInfo Professional help on the dialog box. This is
the default behavior. If the user presses F1 while a MapInfo Professional dialog box is displayed,
Windows help displays an appropriate topic from the MAPINFOW.CHM (the standard MapInfo
Professional help file).

Once the MapInfo Professional help window appears, the user can click various jumps or
navigation buttons to browse the rest of the help file. Users may find this arrangement
confusing, because the MapInfo Professional help file describes the MapInfo Professional
user interface, not the user interface of your Integrated Mapping application.

Disabling Online Help
You can disable all online help for MapInfo Professional dialog boxes by issuing the following
MapBasic statement:

Set Window Help Off

After you issue a Set Window Help Off statement, pressing F1 while on a MapInfo Professional
dialog box has no effect.

Displaying a Custom Help File
You can set MapInfo Professional to use a custom help file. For example, the following MapBasic
statement instructs MapInfo Professional to use the help file CUSTOM.CHM instead of
MAPINFOW.CHM:

Set Window Help File "CUSTOM.CHM" Permanent

After you issue a Set Window Help File…Permanent statement, pressing the F1 key causes
MapInfo Professional to display online help; however, MapInfo Professional displays the help file
that you specify instead of MAPINFOW.CHM. Use this arrangement if you want to provide online
Help for one or more MapInfo Professional dialog boxes, but you do not want the user to have
access to all of the standard MapInfo Professional help file.

If you want to provide custom help for MapInfo Professional dialog boxes, you must set up your
custom help file so that its Context ID numbers match MapInfo Professional’s dialog box IDs.

To determine the ID number of a MapInfo Professional dialog box:

1. Run MapInfo Professional with the -helpdiag command-line argument.

2. Display the MapInfo Professional dialog box for which you want to create help.

3. Press F1. Because you used the -helpdiag option, MapInfo Professional displays the dialog
box’s ID number instead of displaying help. Make note of the dialog box’s ID number.

4. Using your Windows help-authoring software, edit your custom help file, so that your custom
help topic is assigned the same ID number as the MapInfo Professional dialog box.
MapBasic 11.5 227 User Guide

Related MapBasic Statements and Functions
For example, MapInfo Professional’s Find dialog box has the ID number 2202. If you want to provide
your own online help for the Find dialog box, set up your help file so that your custom help topic has
the Context ID number 2202.

Note the following points:

• MapBasic does not include a HTML help compiler. Microsoft provides this for free at:
http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-C8A6-452F-9AA0-
D597D16580CC&displaylang=en

• MapInfo Professional’s dialog box ID numbers are likely to change in future versions.

Related MapBasic Statements and Functions
This section lists some of the MapBasic statements and functions that are particularly useful in
Integrated Mapping applications. For details on these statements and functions, see the MapBasic
Reference Guide or online Help.

Statement/Function Name Description

Create Legend Creates a new Legend window.

Map Creates a new Map window.

MenuitemInfoByID()

MenuitemInfoByHandler()

Determines the status of a MapInfo Professional menu
command (for example, checked or not checked).

Open Table Opens MapInfo Professional tables.

RemoteQueryHandler() Allows MapBasic programs to handle peek requests from DDE
clients.

Run Menu Command Simulates user selecting a MapInfo Professional menu
command or ButtonPad button.

SearchPoint(), SearchRect() Searches the selectable layers of a Map window for objects at
a specific x,y location or objects within a rectangular area.
Allows you to emulate MapInfo Professional’s Info tool or Label
tool.

SearchInfo() Returns information about the results obtained by
SearchPoint() and SearchRect().

Set Application Window Reparents dialog box windows. Issue this statement once in
your client program after you have connected to or launched
MapInfo Professional.

Set Map Controls many aspects of Map windows.
228 MapBasic 11.5

http://www.microsoft.com/downloads/details.aspx?FamilyID=00535334-C8A6-452F-9AA0-D597D16580CC&displaylang=en

Chapter 11: Integrated Mapping
Related MapBasic Statements and Functions
Set Next Document Reparents a document window, such as a Map window, to be
a child window of your client program.

Set Window Controls various aspects of MapInfo Professional windows.

Shade, Set Shade Creates or modifies thematic map layers.

SystemInfo() Some values returned by SystemInfo() are specific to
Integrated Mapping.

Example: Specify SYS_INFO_APPLICATIONWND to retrieve
the application’s HWND.

WindowID(), WindowInfo() Return info about MapInfo Professional windows, even
reparented windows.

Statement/Function Name Description
MapBasic 11.5 229 User Guide

OLE Automation Object Models
OLE Automation Object Models
The following chart provides an overview of MapInfo Professional’s OLE Automation Type Library.
Methods and Properties are described in detail on the following pages.

The Application object represents the instance of MapInfo Professional.

Each object in the MBApplications collection represents a MapBasic application that is currently
running.

Each object in the MBGlobals collection represents a global variable defined by one of the running
MapBasic applications.
230 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
The following chart provides additional objects available in MapInfo Professional’s OLE Automation
Type Library. Methods and Properties are described in detail on the following pages.
MapBasic 11.5 231 User Guide

OLE Automation Object Models
Using the OLE Object Model from within the MapInfo Professional
Process

The OLE Automation object model was originally designed to be used from a client application
running in a separate process (such as, an Integrated Mapping application). However, you can also
use the object model to execute commands from a DLL that is called from a running MapBasic
program. If you take this approach, there are two things to keep in mind:

• You need to execute your commands against the MapInfo Professional process into which your
DLL is loaded. This means you do NOT obtain the OLE object by executing a "CreateObject"
function call, because this would create a second instance of MapInfo Professional. Instead, you
need to use the OLE object that represents the current MapInfo Professional process. You
obtain this value by calling the MapBasic function SystemInfo with the
SYS_INFO_APPIDISPATCH attribute. The function returns an integer value that represents the
IDispatch pointer for the primary OLE object. You pass this value from your MapBasic code to
your DLL code and convert it into an OLE variable that you can use to call methods like Do and
Eval (the exact mechanism for converting the pointer to an OLE object depends on the
programming language you use to implement your DLL).

• If you want to use the callback notifications, be sure to register your callback object using the
new RegisterCallback method, and not the older SetCallback. If you use SetCallback you take
the risk that some other application running inside of MapInfo Professional will "steal" the
callback slot associated with that method. Using RegisterCallback will eliminate this risk.

Properties of the Application Object
The following table lists all of the properties that apply to the Application object. All properties in this
table are read-only, except for Visible and LastErrorCode.

Properties of the Application Object

Property Name Functionality

Name Returns application name (“MapInfo Professional”). OLE
standard property. This is the default property for the Application
object.

FullName Returns full path to application executable. OLE standard
property.

Application Returns the Application object. OLE standard property.

Parent Returns the Application object of its parent object; for an
Application object, returns itself. OLE standard property.

Version Returns text of current version number, multiplied by 100 (for
example, MapInfo Professional 11.5.0 returns “1150").

ProductLevel Returns integer, indicating which MapInfo product is running. For
MapInfo Professional, returns 200.
232 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
Visible Returns a boolean value, indicating whether application window
is visible. This a read/write property. Read the property to
determine the window’s visibility or write the property to set the
window’s visibility.

LastErrorCode Returns a small integer value giving the code number of the last
MapBasic error that occurred during a Do, Eval, or
RunCommand method call.

The code numbers returned here are 1000 higher than
the corresponding MapBasic error code numbers.

Error codes are never automatically cleared to zero; once an
error occurs, the error remains until another error occurs (or until
you write a new value to the property). This a read/write property.

LastErrorMessage Returns a string of the error message that corresponds to
LastErrorCode.

Methods of the Application Object

Method Name Functionality

Do(string) Interprets a string as a MapBasic statement, and executes the
statement.

Eval(string) Interprets a string as a MapBasic expression, and returns the
value of the expression; returns a string. If the expression has a
Logical value, MapInfo Professional returns a one-character
string, “T” or “F”.

RunCommand(string) Interprets a string as a MapBasic statement; this is a synonym
for “Do.”

RunMenuCommand(menuid) Executes the menu command indicated by the Integer menuid
argument. See example below.

This method activates a standard menu command or button; to
activate a custom menu command or button, use the Do method
to issue a Run Menu Command ID statement.

Properties of the Application Object (continued)

Property Name Functionality
MapBasic 11.5 233 User Guide

OLE Automation Object Models
DataObject(windowID) Returns an IUnknown interface representing window with a
particular integer windowID. To get a metafile representation of
the window, use QueryInterface for an IDataObject interface.

IDataObject and IUnknown are the only two interfaces defined
for this object.

This is an advanced feature, intended for C
programmers.

SetCallback(IDispatch) Registers the OLE Automation object as a “sink” for MapInfo
Professional-generated notifications. Only one callback function
can be registered at a time.

This method has been deprecated. It is a better practice to
use the new methods RegisterCallback and
UnregisterCallback.

RegisterCallback
(IDispatch)

Registers the OLE Automation object as a "sink" for
MapInfo Professional-generated notifications. Use this
method when you register a callback from within the
MapInfo Professional process (for example, from a DLL
that is called via MapBasic). Using this method ensures
that your callback object will work side-by-side with other
applications that may be running within the MapInfo
Professional process.

UnregisterCallback
(IDispatch)

Unregisters an OLE Automation object that was registered
via the RegisterCallback method. You must pass the
same argument that was used in the call to
RegisterCallback.

SetCallbackEvents (IDispatch,
eventFlags)

By default, MapInfo Professional will call all valid notification
methods. Using this method you can control which callback
notifications are sent to the callback object. For example, if your
callback object implements WinContentsChanged and the
SetStatusText methods, but in certain situations you only want to
receive the SetStatusText notifications, you can call
SetCallbackEvents (<dispatch id>,
CallbackEvents.WindowChanged) to tell MapInfo Professional
to only send window change notifications. See CallbackEvents
below for details.

Methods of the Application Object (continued)

Method Name Functionality
234 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
For example, the following statement uses the Do method to send MapInfo Professional a Map
statement:

mapinfo.Do "Map From World"

The following statement uses the RunMenuCommand method to execute MapInfo Professional’s
menu command code 1702, which selects MapInfo Professional’s Grabber tool. (To determine a
specific numeric value for a menu code, look in MENU.DEF, or see Integrating MapInfo
Professional Toolbar Buttons on page 217.)

mapinfo.RunMenuCommand 1702

The CallbackEvents enumeration is defined with these members:

• None,
• MenuItem,
• WindowChanged,
• SetStatusTest

You can use one or more of these flags to SetCallbackEvents. To use more than one of the
enumeration values, you must do a "bitwise or" operation. For example, the C++ call to turn the
WindowContentsChanges and SetStatusText notification on is SetCallbackEvents(<dispatch id>,
(int) (WindowChanged | SetStatusText)).

Properties of the DockWindow Object
DockWindow is a A COM interface representing a dock window. The following table lists all of the
properties that apply to the Application object.

IDispatch*
RegisterDockWindow(HWND
hwnd, long domainId)

Registers the given window with MapInfo Professional and
returns an object that represents the docked window. During this
call the dock window is created and docked to the default
position. Calls to Dock and Float methods can be used to set a
custom dock state for the window.

The domainId argument only useful if you are using the COM
API directly from your .Net code. In this case you should pass in
the id of the current AppDomain.

void
UnregisterDockWindow(IDispat
ch* dockWindow)

Unregisters the dock window specified by the dockWindow
argument. Attempts to interact with the DockWindow object after
it is unregistered will result in an error.

Methods of the Application Object (continued)

Method Name Functionality
MapBasic 11.5 235 User Guide

OLE Automation Object Models
Properties of theDockWindow Object

Property Description

BOOL Active Gets a value that indicates whether the dock window is currently
visible.

long id Gets a numeric identifier for the dock window.

BOOL Closed Gets a value that indicates whether a dock window is closed.

DockPosition DockPosition Gets a value that indicates the state of the dock window. This
value can indicate a floating state, or the side of the application to
which the window is docked. If the window is not is a docked state,
then the value for the last docked position is returned.

For description of DockPosition, see DockPosition Enumeration
on page 237.

int DockSizeCX Gets the width of a window docked to the left or right side of the
application. If the window is not is a docked state, then the value
for the last docked width is returned.

int DockSizeCY Gets the height of a window docked to the top or bottom side of
the application. If the window is not is a docked state, then the
value for the last docked position is returned.

BOOL Floating Gets a value that indicates whether the window is in a floating
state.

BOOL Pinned Gets a value that indicates whether a dock window is unpinned.
When a dock window is pinned a small tab with the window title
appears in the dock area on the side of the application window
where the window was docked. When you move you mouse over
the tab the dock window scrolls into view. When you are done
with the window it scrolls back out of view.

BSTR Title Gets or sets a value that is used in the dock window caption bar.
236 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
DockPosition Enumeration

The DockPosition enumeration is defined with these members:

• PositionFloat,
• PositionLeft,
• PositionTop,
• PositionRight,

LastErrorCode Returns a small integer value giving the code number of the last
MapBasic error that occurred during a Do, Eval, or RunCommand
method call.

The code numbers returned here are 1000 higher than the
corresponding MapBasic error code numbers.

Error codes are never automatically cleared to zero; once an error
occurs, the error remains until another error occurs (or until you
write a new value to the property). This a read/write property.

LastErrorMessage Returns a string of the error message that corresponds to
LastErrorCode.

Methods of theDockWindow Object

Method Description

void Activate() Ensure that a window is visible and has focus.

void Close() Closes a window. You can redisplay the window by calling
Activate(). To destroy a window call
IMapInfo.UnregisterDockWindow.

void Dock(DockPosition, cx,
cy)

Docks a window to the side of an application window.

For description of DockPosition, see DockPosition Enumeration
on page 237.

void Float (left, top, right,
bottom)

Puts a window into floating state using the parameter values to
determine the size and location of the window.

void FloatSize (*left, *top,
*right, *bottom)

Gets the floating size and location of the window. If the window is
not currently in a float state, then the value for the last float state
are returned.

void Pin() Pins a dock window to a side of the application window.

Properties of theDockWindow Object

Property Description
MapBasic 11.5 237 User Guide

OLE Automation Object Models
• PositionBottom

You can use these enumeration values in properties and methods of the DockWindow object.

Properties of the MBApplications Collection
MBApplications is a collection of all the MapBasic applications that MapInfo Professional is currently
running. The properties in the following table are all read-only.

Properties of an Object in MBApplications
Each object in the MBApplications collection is a running MapBasic application. The properties in
the following table are all read-only.

For example, the following statements determine the name of a running MapBasic application:

Properties of the MBApplications Collection

Property Name Functionality

Item Returns IDispatch of a particular programobject object. Argument is a
VARIANT type which can evaluate to an integer index (1…Count) or a string
value (name of the program). This is the default property for the
MBApplications collection.

Count Returns the long integer number of objects in the collection (i.e., the number
of running applications).

Application Returns IDispatch of the MapInfo Professional application object. OLE
standard property.

Parent Returns IDispatch of its parent object; for this collection, that’s the MapInfo
Professional application object. OLE standard property.

Properties of an Object in MBApplications

Property Name Functionality

Name Returns name of application (for example, “FOO.MBX”). OLE standard
property. This is the default property for an MBApplication object.

FullName Returns full path to MapBasic application .MBX file. OLE standard property.

Application Returns IDispatch of the application. OLE standard property.

Property Name Functionality

Parent Returns IDispatch of its parent object; for a programobject, that’s the MapInfo
Professional application object. OLE standard property.
238 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
Dim appsList As Object
Dim firstname As String

Set appsList = mapinfo.MBApplications
If appsList.Count > 0 Then

firstname = appsList(1).Name
End If

Properties of the MBGlobals Collection
MBGlobals is a collection of all the MapBasic global variables declared by a specific MapBasic
application that is running. The properties in the following table are all read-only.

Methods of an Object in MBApplications

Method Name Functionality

Do(string) The specified string is sent to the MapBasic application’s
RemoteMsgHandler procedure.

Eval(string) The specified string is sent to the MapBasic application’s
RemoteQueryHandler() function; the value returned by
RemoteQueryHandler is returned.

RemoteQueryHandler() must be defined as a function that returns a
string. If the expression has a Logical value, MapInfo Professional returns
a one-character string, “T” or “F”.

Properties of the MBGlobals Collection

Property Name Functionality

Item Returns IDispatch of a particular mbglobal object. Argument is a VARIANT
type which can evaluate to an integer index (1…Count) or a string value
(name of the global variable). This is the default property for the MBGlobals
collection.

Count Returns a long integer value of the number of objects in the collection (the
number of global variables).

Application Returns IDispatch of MapInfo Professional application object. OLE standard
property.

Parent Returns IDispatch of its parent object; for this collection, that’s the
programobject object. OLE standard property.
MapBasic 11.5 239 User Guide

OLE Automation Object Models
Properties of an Object in MBGlobals
Each object in the MBGlobals collection is a MapBasic global variable. The properties in the
following table are all read-only, except for the Value property.

The following Visual Basic example examines and then alters the value of a global variable
(g_status) in a MapBasic application.

Dim globinfo As Object
Dim old_value As Integer

’ Look at the globals used by the first
’ running MapBasic app:
Set globinfo = mapinfo.MBApplications(1).MBGlobals

’ Look at a global’s current value by reading
’ its "Value" property:
old_value = globinfo("g_status").Value

’ Assign a new value to the global:
globinfo("g_status") = old_value + 1

The expression globinfo("g_status") is equivalent to globinfo("g_status").Value
because Value is the default property.

Properties of an Object in MBGlobals

Property Name Functionality

Value Read/write. Read the property to retrieve a string representing the value of
the MapBasic global variable; write the property to change the value of the
variable. This is the default property for an MBGlobal object.

Name Returns name of the variable. OLE standard property.

Type Returns a text string giving the type of the variable as one of MapInfo
Professional’s standard types (“Integer”, “Date”, etc.).

Application Returns IDispatch of the application. OLE standard property.

Parent Returns IDispatch of its parent object; for an MBglobal object, that’s the
programobject which declared the global variable. OLE standard property.
240 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
Properties of the MIMapGen Object
The following table lists the properties that apply to the MIMapGen object. The MIMapGen object is
used primarily by MapInfo ProServer applications; however, MapInfo Professional applications can
use the MIMapGen object as well. For examples of using the MIMapGen object model, see the
MapInfo ProServer documentation.

Setting the Workspace property is the first step to using the MIMapGen object. MIMapGen is
designed to work in situations where there is a single map window (for example, when a web page
shows a single map). To begin using MIMapGen, set the Workspace property, so that MapInfo
Professional loads a workspace—typically, a workspace that contains a single Map window. Then
you will be able to use the other methods and properties to manipulate the Map window.

Properties of the MIMapGen Object

Property Name Functionality

Workspace Path to a MapInfo workspace file. When you set the property, MapInfo
Professional loads the workspace.

MBApp Path that points to a MapBasic application (MBX file). When you set the
property, MapInfo Professional runs the MBX.

LongLat Boolean: Defines interface coordinate system. When TRUE, all values that you
get and put (using CenterX and CenterY) represent longitude and latitude.
When FALSE, the map window’s coordinate system will be used.

SuppressDlgs Boolean: If TRUE, an action that invokes a dialog box will generate an error.
This includes dialog boxes invoked as a result of a Run Menu Command
statement.

ImageWidth Width of the image area, in pixels.

ImageHeight Height of the image area, in pixels.

CenterX X-coordinate (for example, Longitude) of the map center.

CenterY Y-coordinate (for example, Latitude) of the map center.

Zoom The width of the map (for example, number of miles across). This number
reflects the units used by the Map window (for example, miles, kilometers).
MapBasic 11.5 241 User Guide

OLE Automation Object Models
Methods of the MIMapGen Object
The following methods apply to the MIMapGen object.

Methods of the MIMapGen Object

Method Functionality

ZoomCenterMap() Renders the map based on the current CenterX, CenterY, and Zoom
properties. The map is only regenerated if the center or the zoom have
changed since the map was last rendered.

RenderMap() Same effect as ZoomCenterMap, except that the map is always
regenerated.

ZoomMap
(double ZoomFactor)

Zooms the map in or out, to the extent indicated by the zoom factor.
Positive numbers zoom in; negative numbers zoom out.

ClickCenterMap
(long MouseX,
long MouseY)

Recenters the map based on the mouse click position. The x/y
arguments represent locations on the map, in pixels.

ClickCenterZoomMap
(long MouseX,
long MouseY,
double ZoomFactor)

Recenters the map based on the mouse click position, and zooms the
map based on the zoom factor; negative number zooms out.

ClearCosmeticLayer() Same effect as the Map menu command: Deletes all objects from the
Cosmetic layer.

SQLUnselectAll() Same effect as the Query menu command: De-selects all rows.

SearchRadius
(double CenterPointX,
double CenterPointY,
double Radius)

Performs a radius search.

SearchRadiusExt
(double CenterPointX,
double CenterPointY,
double OuterPointX,
double OuterPointY)

Performs a radius search, To define the search circle, specify the
center point and a point that is somewhere along the circle’s radius.

SearchPoint
(double CenterPointX,
double CenterPointY)

Searches a small area around the specified location.

SearchRect
(double x1, double y1,
double x2, double y2)

Searches within a rectangular area.
242 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
The searching methods search only the topmost selectable layer. To access the search
results, see the MISearchInfo object.

Properties of the MISearchInfo Object
The following properties apply to the MISearchInfo object.

GetTable
(string Tablename)

Returns an MISelection object (IDispatch); to access the contents of
the table, use the MISelection object.

ExportMap
(string ImageType,
string FileSpec)

Generates an image file (for example, a JPEG, TIFF, PNG, PSD,
BMP, WMF, or GIF file) of the Map window. See the MapBasic Save
Window statement.

ExportMapEx
(string ImageType,
string FileSpec,
string CopyrightInfo)

Generates an image file (for example, a JPEG, TIFF, PNG, PSD,
BMP, WMF, or GIF file) of the Map window. See the MapBasic Save
Window statement.

RefreshProperties() Updates CenterX, CenterY, Zoom, ImageHeight, and ImageWidth.

ScreenToMap
(long ScreenX,
long ScreenY,
double MapX,
double MapY)

Converts screen coordinates (pixels) into map coordinates (for
example, longitude/latitude).

MapGenHandler
(string Message)

Calls the MapBasic sub procedure RemoteMapGenHandler in the
MBX application that was executed through the MBApp property. Use
this method to run MapBasic statements in an MBX file.

Methods of the MIMapGen Object (continued)

Method Functionality

Properties of the MISearchInfo Object

Property Functionality

Rows This property returns an MIRows collection (a collection of MIRow objects). The
collection represents the search results.

Fields This property returns an MIFields collection (a collection of MIField objects).
The collection represents a set of field definitions (field names, etc.) describing
the search results.

TableName String: The name of the table that contains the search results.
MapBasic 11.5 243 User Guide

OLE Automation Object Models
To obtain an MISearchInfo object, use one of the MIMapGen object’s search methods:
SearchRadius, SearchRadiusExt, SearchPoint, or SearchRect.

Method of the MIRow Object
The following method applies to the MIRow object. Each MIRow object represents one record
returned by a search method, or one row in the table specified in the GetTable method call.

To obtain a collection of MIRow objects, reference the Rows property of the MISearchInfo
object or the MISelection object.

Properties of the MIField Object
The following properties apply to the MIField object. Each MIField object describes one of the data
columns in the latest search results, or one of the data columns in the table specified in the GetTable
method call.

Method of the MIRow Object

Method Functionality

Value Returns a pointer to the data value for the given column specified by using a variant
arg. The allowed variant types are VT_12, VT_14, and VT_BSTR (where the
VT_BSTR is the column name).
244 MapBasic 11.5

Chapter 11: Integrated Mapping
OLE Automation Object Models
To obtain a collection of MIField objects, reference the Fields property of the MISearchInfo
object or the MISelection object.

Properties of the MISelection Object
The following properties apply to the MISelection object.

To access the MISelection object, use the GetTable method from the MIMapGen object.

Properties of the MIField Object

Property Functionality

Name String: The name of the column.

Type Short: The data type of the field. The following values are valid:

• (1) DT_CHAR
• (2) DT_DECIMAL
• (3) DT_INTEGER,
• (4) DT_SMALLINT
• (5) DT_TIME
• (6) DT_LOGICAL
• (8) DT_FLOAT.

Width Short: The width of the field; applies to DT_CHAR and DT_DECIMAL fields
only.

DecimalPlaces Short: The number of decimal places in a DT_DECIMAL field.

Properties of the MISelection Object

Property Functionality

Rows This property returns an MIRows collection (a collection of MIRow objects). The
collection represents all of the rows in a table.

Fields This property returns an MIFields collection (a collection of MIField objects).
The collection represents the field definitions (field names, etc.) for the table
that was specified in the GetTable method.

TableName String: The name of the table that was specified in the GetTable method.
MapBasic 11.5 245 User Guide

MapInfo Professional Command-Line Arguments
MapInfo Professional Command-Line Arguments
If you use DDE to communicate with MapInfo Professional, you will need to launch MapInfo
Professional manually (for example, by calling Visual Basic’s Shell() function) before you establish
the DDE connection. When you launch MapInfo Professional, you can use any of the command-line
arguments listed below. If you want the user to remain unaware that MapInfo Professional is
running, you will want to specify one of the following arguments.

The forward slash (“/”) can be used instead of the minus sign.

Command-Line Argument Effect

-nosplash MapInfo Professional runs without showing its splash
screen, although the main MapInfo Professional window still
shows.

-server MapInfo Professional runs without showing a splash screen
or main window. Use this argument when you want MapInfo
Professional to act as a behind-the-scenes server to another
application (using DDE).

-automation or -embedding MapInfo Professional runs without displaying a splash
screen or main window. Additionally, MapInfo Professional
registers its OLE Class Factory with the OLE subsystem,
which allows MapInfo Professional to act as a behind-the-
scenes OLE server to another application.

-regserver MapInfo Professional registers its OLE capabilities in the
registration database, then exits. Run MapInfo Professional
with this argument once, when you install MapInfo
Professional. Note that MapInfo Professional automatically
registers itself when it is run normally. Note very well that this
registers everything about the MapInfo product: OLE
Automation, OLE Embedding, etc.

-unregserver MapInfo Professional removes all references to itself from
the registration database and exits. Use this option at
uninstall time to remove MapInfo Professional from the
system registry. Using this argument unregisters everything
that the -regserver option registered.

-helpdiag This argument sets a flag in MapInfo Professional, so that
MapInfo Professional displays a diagnostic dialog box every
time you press F1 for online Help. For more information on
Help issues, see Displaying Standard MapInfo
Professional Help on page 227.
246 MapBasic 11.5

Chapter 11: Integrated Mapping
MapInfo Professional Command-Line Arguments
Getting Started with Integrated Mapping and Visual C++ with MFC
The remainder of this chapter will walk you through the creation of an Integrated Mapping
application using Microsoft Visual C++ with MFC. These instructions are written primarily for users of
the 32-bit Visual C++ (version 2.0 or higher), but they have also been tested with the 16-bit version
of Visual C++ (version 1.52). Differences are noted where appropriate.

Create a New Project

1. Run Visual C++ 2.x (32-bit) or 1.5x (16-bit).

2. Choose File > New to create a new project.

3. Make the project an MFC AppWizard application, and choose the options that you want. For your
first demonstration, it’s easiest to make the application a single document application (SDI),
rather than supporting multiple documents (MDI). Note well that you’re not required to enable
any of the standard OLE support. If you want to use callbacks to your application from MapInfo
Professional, you should enable support for OLE Automation in Step 3 of 6 of the MFC
AppWizard.

4. Build the application and run it to verify that everything starts out okay.

Add OLE Automation Client Support

If you did not choose any OLE support during the AppWizard phase, you must add OLE Automation
client support now.

1. Open STDAFX.H and add these lines:
#include <afxole.h>
#include <afxdisp.h>

2. Open your main program source file (i.e., projectname.CPP) and add the following lines to the
beginning of CprojectnameApp::InitInstance:
if (!AfxOleInit()) {

AfxMessageBox(IDP_OLE_INIT_FAILED);
return FALSE;
}

3. Add the message string by opening your resource file (i.e., projectname.RC), open the “String
Table” resource, and pick Resource > New String. In the Properties dialog box that appears,
set ID: to “IDP_OLE_INIT_FAILED”, and Caption: to “OLE initialization failed. Make sure that the
OLE libraries are the correct version.” Close the Properties dialog box by clicking in the close
box. Then close the resource windows and save the changes when prompted.

Create the MapInfo Professional Support Class, and create an instance of it

In Project > ClassWizard, choose the OLE Automation tab, and click the Read Type Library
button. Navigate to your MapInfo Professional program directory and select the MAPINFOW.TLB
file. Click OK to confirm the classes to be created. This creates the classes that allow you to access
MapInfo Professional through the OLE Automation interface.

Open your main program source file (i.e., projectname.CPP) and add the following lines of code.
MapBasic 11.5 247 User Guide

MapInfo Professional Command-Line Arguments
• After all of the other #includes add:
#include "MapInfow.h"

• Just below the declaration “CprojectnameApp theApp”, add the following variable declaration:
DMapInfo mapinfo;

• Near the end of CprojectnameApp::InitInstance, but before the OnFileNew() call, add:
mapinfo.CreateDispatch("MapInfo.Application");

Open the file MAPINFOW.H and add the following lines at the bottom of the file:

extern DMapInfo mapinfo;
#include "path-to-mapbasic-directory\mapbasic.h"

Test Your Work

Add one more line of code at the end of the CprojectnameApp::InitInstance function, immediately
following the CreateDispatch call added above:

::MessageBox(0, mapinfo.GetFullName(), mapinfo.GetName(), MB_OK);

Rebuild your program. When you run, you will get a message box on startup with the title “MapInfo
Professional” and the full path to the MapInfo Professional executable in the message area. This
demonstrates that you are successfully launching MapInfo Professional and accessing through OLE
Automation. You probably want to comment out or remove the ::MessageBox call as you work
through the rest of this exercise.

Redefine the Shortcut Menus

When we incorporate a Map into our application, we’ll get all of the functionality that MapInfo
Professional provides for that Map automatically. Sometimes, this functionality is not appropriate.
The place where this occurs most often is in the default shortcut menu (accessed by right-clicking on
the Map), which includes at least one inappropriate command: Clone Map. To eliminate the
inappropriate command, redefine the shortcut menu.

Near the end of CprojectnameApp::InitInstance, just after the CreateDispatch call we added, we’ll do
our additional initialization:

// disable the help subsystem: not used in this application
mapinfo.Do("Set Window Help Off");
// Reprogram the mapper shortcut menu
mapinfo.Do("Create Menu \"MapperShortcut\" ID 17 as \"(-\"");

This is also a good time to do other initialization, such as opening tables that you know you’ll need.

Reparenting MapInfo Professional’s Dialog Boxes

It’s important to reparent MapInfo Professional’s dialog boxes to your application window in case
MapInfo Professional needs to interact with the user. By doing this, you ensure that the dialog box
appears over your application and that your application window is disabled while the user interacts
with the MapInfo Professional dialog box. This one statement reparents both dialog boxes that you
ask MapInfo Professional to show (for example, by using RunMenuCommand with predefined item
numbers) and error and warning messages that MapInfo Professional shows in response to unusual
events.

In MainFrm.CPP, function CMainFrame::OnCreate, we need to do the following:
248 MapBasic 11.5

Chapter 11: Integrated Mapping
MapInfo Professional Command-Line Arguments
• After all of the other #includes add:
#include "MapInfow.h"

• At the end of CMainFrame::OnCreate, add:
char str[256];
sprintf(str, "Set Application Window %lu", (long)(UINT)m_hWnd);
mapinfo.Do(str);

Demonstrate that this works by adding the following statement to the CprojectnameApp::InitInstance
function, just after the OnFileNew() call. This will cause MapInfo Professional to display one of its
standard dialog boxes within the context of your application:

mapinfo.Do("Note \"Hello from MapInfo\"");

Please test your application at this point to ensure that it is working properly.

Adding a Map to your View

Now that you have a functioning MFC application that attaches to MapInfo Professional through
OLE Automation, you can start taking advantage of MapInfo Professional’s capabilities. In particular,
we’ll now add a Map to this application.

Go to the Project > ClassWizard dialog box. Select the view class (CprojectnameView), and the
“Message Maps” tab. Select the “CprojectnameView” object in the leftmost listbox.

In the Messages listbox, select “WM_CREATE”, then press Add Function; select
“WM_DESTROY”, then press Add Function; and select “WM_SIZE”, then press Add Function.

In the view header file (projectnameVW.H), add the following member variables to the view class:

unsigned long m_windowid;
HWND m_windowhwnd;

In the view source file (projectnameVW.CPP), add the following:

• After all of the other #includes add:
#include "MapInfow.h"

• In the constructor (CprojectnameView::CprojectnameView), initialize the variables:
m_windowid = 0;
m_windowhwnd = 0;

• In the OnCreate method, add the following code after the call to CView::OnCreate:
//must have ClipChildren style for integratable maps to work
SetWindowLong(m_hWnd, GWL_STYLE,

GetWindowLong(m_hWnd, GWL_STYLE)
|WS_CLIPCHILDREN);

char str[256];
mapinfo.Do("Open Table \"States\" Interactive");
sprintf(str,

"Set Next Document Parent %lu Style 1 Map From States",
(long)(UINT)m_hWnd);

mapinfo.Do(str);
m_windowid = atol(mapinfo.Eval("WindowID(0)"));
sprintf(str, "WindowInfo(0, %u)", WIN_INFO_WND);
m_windowhwnd = (HWND)atol(mapinfo.Eval(str));
MapBasic 11.5 249 User Guide

Adding Toolbar Buttons and Handlers
In the OnDestroy method, add the following code before the call to CView::OnDestroy:

if (m_windowhwnd) {
::DestroyWindow(m_windowhwnd);
m_windowhwnd = NULL;
m_windowid = 0L;

}

• In the OnSize method, add the following code after the call to CView::OnSize:
if (m_windowhwnd && cx > 0 && cy > 0) {

::MoveWindow(m_windowhwnd, 0, 0, cx, cy, TRUE);
}

Adding a Map Menu Command

All menu items can be added using the example procedure described below. The example shows
how to add a Map>Layer Control menu item.

1. Open your resource file (i.e., projectname.RC), open the “Menu” resource, and select
IDR_MAINFRAME.

2. Add a new main menu item titled “Map”. Under “Map” add a “Layer Control” item and save the
changes to the RC file.

3. In Project > ClassWizard, chose the Message Map tab, and select CprojectnameView from the
Class Name list. In the Object ID’s list select the ID that maps to the menu item you just
created—this will be ID_MAP_LAYERCONTROL by default. Once you select this, the
COMMAND and UPDATE_COMMAND_UI messages will appear in the Messages window. Add
function prototypes for each message by selecting each and pressing Add Function, accepting
the default names generated.

4. In your CprojectnameView class you’ll see both functions added. Add the following lines of code
to the function bodies.
void CprojectnameView::OnMapLayercontrol()
{

mapinfo.RunMenuCommand(M_MAP_LAYER_CONTROL);
}
void CprojectnameView::OnUpdateMapLayercontrol(CCmdUI* pCmdUI)
{

CmdUI->Enable(m_windowid);
}

Adding Toolbar Buttons and Handlers
All toolbar buttons can be added using the example procedure described below. The example will
show how to add the MapInfo Professional Selector, Grabber, Zoom-In, and Zoom-Out tools to the
toolbar. For convenience, we’ll also add them to a new menu named Tools; this makes adding them
to the toolbar a little easier using the ClassWizard.

1. First, follow the instructions listed above (Adding a Map Menu Command on page 250) and
create a new menu named Tools, with four new items (Selector, Grabber, Zoom-In, Zoom-Out).
Define the UPDATE_COMMAND_UI and COMMAND functions as before, using the appropriate
250 MapBasic 11.5

Chapter 11: Integrated Mapping
Adding Toolbar Buttons and Handlers
codes from the MAPBASIC.H file for each tool (M_TOOLS_SELECTOR,
M_TOOLS_RECENTER, M_TOOLS_EXPAND, and M_TOOLS_SHRINK, respectively).
Compile and test your application when you’re done.

2. Open the project RC file, select the bitmap resource IDR_MAINFRAME, and make the bitmap 64
pixels wider (room for 4 more 16-pixel buttons). Move the images of the last several buttons to
the right, making room just after the “paste” button. Draw appropriate images for the four new
tools, for example, an arrow (selector), a hand (grabber), a magnifying glass (zoom-in), and a
magnifying class with a minus sign (zoom-out).

3. Open the String resource, add new strings for each of the new tools. Use the same IDs as you
used when creating the menu items earlier; the strings should be a descriptive string followed by
\n and the tooltip text. For example, ID_TOOLS_SELECTOR as Select map
objects\nSelector; ID_TOOLS_GRABBER as Recenter the map\nGrabber;
ID_TOOLS_ZOOMIN as Zoom-In to show less area, more detail\nZoom-In; and
ID_TOOLS_ZOOMOUT as Zoom-Out to show more area, less detail\nZoom-Out.

4. In MAINFRM.CPP locate the static UINT BASED_CODE buttons[] array and insert the ID
constants into the array in the same position that they appear in the bitmap resource.

5. In order to get the user interface right, we need to keep track of which tool is currently selected.
In the CprojectnameView header file, add an integer variable to keep track of this:
int m_eMouseMode;

6. Initialize this variable in the class constructor, to represent the initial state of the map. Note that
we’ll use the MapInfo Professional constants for the various tools to keep track of which one is
selected.
m_eMouseMode = M_TOOLS_SELECTOR;

7. If you created the menu items first, you already have COMMAND and UPDATE_COMMAND_UI
entries in the message map; if not, you should add them now.

8. Update the user interface by calling CCmdUI::SetRadio in each OnUpdate routine, and set the
m_eMouseMode variable accordingly in each OnToolsToolname handler. That is, your routines
should now read as follows:
void CprojectnameView::OnToolsSelector()
{

m_eMouseMode = M_TOOLS_SELECTOR;
mapinfo.RunMenuCommand(M_TOOLS_SELECTOR);

}
void CprojectnameView::OnToolsGrabber()
{

m_eMouseMode = M_TOOLS_RECENTER;
mapinfo.RunMenuCommand(M_TOOLS_RECENTER);

}
void CprojectnameView::OnToolsZoomin()
{

m_eMouseMode = M_TOOLS_EXPAND;
mapinfo.RunMenuCommand(M_TOOLS_EXPAND);

}
void CprojectnameView::OnToolsZoomout()
{

MapBasic 11.5 251 User Guide

Adding Toolbar Buttons and Handlers
m_eMouseMode = M_TOOLS_SHRINK;
mapinfo.RunMenuCommand(M_TOOLS_SHRINK);

}
void CprojectnameView::OnUpdateToolsSelector(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_SELECTOR);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsGrabber(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_RECENTER);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsZoomin(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_EXPAND);
pCmdUI->Enable(m_windowid);

}
void CprojectnameView::OnUpdateToolsZoomout(CCmdUI* pCmdUI)
{

pCmdUI->SetRadio(m_eMouseMode == M_TOOLS_SHRINK);
pCmdUI->Enable(m_windowid);

}

Using Exception Handling to Catch MapInfo Professional Errors
MapInfo Professional communicates error conditions to the Integrated Mapping application using the
MFC COleDispatchException class. MapInfo Professional returns the error code in the
COleDispatchException member variable m_wCode, and a description string in the
COleDispatchException member variable m_strDescription. Other general OLE exceptions are
passed via the COleException class. You must handle these exceptions somewhere in your
application; if not, the top-level MFC exception handler will be invoked and will get the message
“Command failed”. You can add handlers for each type of exception in each of the DMapInfo
methods. The following illustrates this in the DMapInfo::Do method.

The original DMapInfo::Do method, as generated by the ClassWizard, looks like this:

void DMapInfo::Do(LPCTSTR command)
{
static BYTE BASED_CODE parms[] = VTS_BSTR;
InvokeHelper(0x6001000b, DISPATCH_METHOD, VT_EMPTY,

NULL, parms, command);
}

The improved DMapInfo::Do method, with exception handling built-in, looks like this:

void DMapInfo::Do(LPCTSTR command)
{
static BYTE BASED_CODE parms[] = VTS_BSTR;
try {
InvokeHelper(0x6001000b, DISPATCH_METHOD, VT_EMPTY,

 NULL, parms, command);
}

252 MapBasic 11.5

Chapter 11: Integrated Mapping
Adding Toolbar Buttons and Handlers
catch(COleDispatchException *e) {
// Handle the exception in a manner appropriate to your
// application. The error code is in e->m_wCode.
AfxMessageBox(e->m_strDescription);
e->Delete();
}
catch(COleException *e) {
AfxMessageBox("Fatal OLE Exception!");
e->Delete();
}
}

Add OLE Automation Server Support
In your CprojectnameDoc.cpp file, add the Dispatch map after the Message map.

BEGIN_DISPATCH_MAP(CprojectnameDoc, CDocument)
//{{AFX_DISPATCH_MAP(CprojectnameDoc)

//NOTE:The ClassWizard will add and remove mapping macros here
//DO NOT EDIT what you see in these blocks of generated code!

//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()
In your CprojectnameDoc.cpp file, add to the CprojectnameDoc
constructor:
EnableAutomation();
AfxOleLockApp();
In your CprojectnameDoc.cpp file, add to the CprojectnameDoc

destructor:
AfxOleUnlockApp();

In your CprojectnameDoc.h header file, add the Dispatch section after
the message map:

// Generated OLE dispatch map functions
//{{AFX_DISPATCH(CprojectnameDoc)

//NOTE:The ClassWizard will add and remove member functions here.
//DO NOT EDIT what you see in these blocks of generated code !

//}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()

The above code fragments illustrate adding automation support to your CDocument derived
class. When using MFC, you can add automation support just as easily to any class derived
from CCmdTarget. Thus, for an MDI application, you will want to attach the automation
interface to either your CWinApp derived class or your CMDIFrameWnd derived class, both
of which are derived from CCmdTarget because you only want to set the IDispatch pointer
for MapInfo Professional callbacks once. In an MDI application, documents and their views
are destroyed when closed. If you set the IDispatch pointer to a document, it will no longer be
valid when the document is closed.
MapBasic 11.5 253 User Guide

Learning More
Adding the WindowContentsChanged Callback
If you’re writing an SDI application and you added the automation DISPATCH message map to your
CprojectnameDoc class, then you can set the callback pointer in your CprojectnameDoc
constructor, or any where else where it will only be called once.

mapinfo.SetCallback(this->GetIDispatch(FALSE));

In Project > Class Wizard, choose the OLE Automation tab, and select from the Class Name list
the class that has OLE Automation enabled (for this example it is your CprojectnameDoc class).
Choose Add Method and fill in the method name as “WindowContentsChanged”, return type as
“SCODE”, and argument list as “long lWindowID”. When you click OK and exit the dialog box, the
Class Wizard automatically updates your CprojectnameDoc cpp and header file. In the cpp file, fill in
the function body of WindowContentsChanged to do any post processing necessary. For example,
this is a good place to do legend maintenance.

Learning More
To learn more about Integrated Mapping, look at the sample programs provided with the MapBasic
development environment. The following samples are provided:

• Samples\VB\FindZip: Visual Basic program, used as an example throughout this chapter.
• Samples\VB\VMapTool: Visual Basic program that demonstrates advanced tasks, such as

callbacks; requires Visual Basic 4.0 Professional Edition or later.
• Samples\MFC\FindZip: A sample MFC application.
• Samples\PwrBldr\Capitals: A sample 16-bit PowerBuilder application. You must have the

PowerBuilder runtime environment on your system to run it.
• Samples\Delphi\TabEdMap: A sample Delphi application.

Check the Samples directory (within the MapBasic directory) for additional samples.
254 MapBasic 11.5

12

Working with .Net
MapBasic programs can call functions and subroutines written using Microsoft's
.Net development platform. You can write code in languages such as C# (C-
sharp) and VB.Net (Visual Basic for .Net), using Microsoft's Visual Studio
development environment. Then you can call those .Net routines from your
MapBasic programs.

Some tasks that are difficult—or, in some cases, not supported at all—in the
MapBasic language are relatively easy to do in .Net. For example, MapBasic's
Dialog statement cannot create dialog boxes with Tab controls or TreeView
controls, but you can easily create such dialogs in .Net.

You may find it useful to write some parts of your application using .Net, and
then call those routines from your MapBasic application.

Topics in this section:

Introduction and Requirements for .Net Programmability256
Getting Started .256
Working with Structures in .Net .261
Exception Handling .265
Working with the GAC .266
Controlling MapInfo Professional from Within a .Net Method . .267
Integrated Mapping in .Net .269

Introduction and Requirements for .Net Programmability
Introduction and Requirements for .Net Programmability
This chapter assumes that you are already somewhat familiar with how to write code in .Net. In
particular, you should already understand how to define a class in .Net, how to give your class a
constructor, and how to build a project using Microsoft's Visual Studio development environment for
.Net.

You must use MapInfo Professional and MapBasic version 10 or higher to call .Net routines from
MapBasic.

The .Net version 3.5 framework must be installed on the computer where you will run the MapBasic
application (.mbx) file; however, you can assume that the .Net framework is already present on any
system where MapInfo Professional 10 or higher is running, since the MapInfo Professional installer
will install the framework if it is not already present.

Code samples in this chapter are provided in VB.Net and C#. The examples in this chapter were
written using Visual Studio 2005.

Terminology
In this chapter, the term method refers to any sub or function routine written in .Net. For example, a
Sub routine written in VB is one type of method, while a Function written in VB is another type of
method. Both types of methods can be called from MapBasic.

Some methods can be called without first creating an instance of the class. C# programmers refer to
these methods as static methods, while VB.Net syntax refers to them as shared functions. In this
chapter, we will use the term static method to refer to a method that can be called without first
creating an instance of the class.

Getting Started
This section provides a simple example of how to create a class in .Net, and use the class from
MapBasic.

Calling a .Net method from MapBasic involves six basic steps:

1. Create a class in .Net, containing one or more static methods

2. Build the .Net class into an assembly

3. Make the assembly available to the MapBasic application

4. Add a Declare Method statement to the .MB program

5. Call the method that you declared in the Declare Method statement

6. Compile and run your MapBasic application.
256 MapBasic 11.5

Chapter 12: Working with .Net
Getting Started
Creating a Class in .Net
You can start by defining a class in .Net. The class can be very simple. The main requirement is that
the class must contain at least one static method. MapBasic programs can only call .Net methods
that are static.

The following example shows a simple class, with one static method that displays a greeting in a
dialog box. This method takes one String argument, and returns an integer value (indicating the
number of characters in the String).

If you write this class in C#, the code looks like this:

using System;
using System.Windows.Forms;

namespace MapBasicMethods
{
 public class Demo
 {
 public static int SayHello(String strName)
 {
 MessageBox.Show("Hello, " + strName);
 return strName.Length;
 }
 }
}

Much of the code in this example was generated by Visual Studio, so there is little code that you
have to type in by hand. When you create a new project in Visual Studio, choose the project
template that lets you define a new Class Library, and Visual Studio will generate much of the
needed code.

This same class, written in VB, might look like this:

Namespace MapBasicMethods

 Public Class Demo

 Public Shared Function SayHello(ByVal s As String) As Integer
 System.Windows.Forms.MessageBox.Show("Hello, " + s)
 Return s.Length
 End Function

 End Class

End Namespace

This VB example declares the namespace explicitly, in the source code. Your VB project
might not have the Namespace declaration in the source code if you have a Root
Namespace set in your VB project properties.
MapBasic 11.5 257 User Guide

Getting Started
The SayHello method uses the .Net MessageBox class to display a dialog box such as this:

Since this sample uses the MessageBox class, the project depends on a standard assembly,
System.Windows.Forms. If you type in this example yourself, you may need to add a Reference to
the System.Windows.Forms assembly to your Visual Studio project.

Building and Copying the Assembly File
Once you have written your class, you use Visual Studio to build the class into a .exe or .dll file.

You will need to make your assembly available to your MapBasic application. The simplest way to
do this is to copy the assembly (.dll) file to the directory where the .MBX file resides -- the directory
from where you will run the .MBX. Alternatively, rather than copy the assembly to the .MBX
directory, you could instead register the assembly in the .Net Global Assembly Cache (GAC). To
register your assembly, use the gacutil utility provided by Microsoft; for details, see the .Net
documentation from Microsoft.

MapInfo Professional allows you to run a .MBX application from a network location, such as a
UNC path. However, the default .Net Framework security settings do not allow loading a .Net
assembly from the network. If you call your own .Net assembly from your MapBasic
application, consider installing your application files on client machines, rather than having
the client machines access the files via a network. Otherwise you will have to modify the
security settings through the .Net Framework 2.0 Configuration utility found in Control Panel
> Administrative Tools. The exact steps to change the security settings are beyond the
scope of this documentation.

Now that you have a static method, in a class, in a .Net assembly, you can call that method from
MapBasic.

Declaring and Calling the Method from MapBasic
Before you call the .Net method from MapBasic, you must add a Declare Method statement to your
.MB program. The Declare Method statement is very similar to the Declare Function statement, but it
includes additional syntax to let you specify the assembly and class name of your .Net class.

For details about the Declare Method syntax, see the MapBasic online help. The following example
shows how you might declare the SayHello method from the example above.

' MapBasic syntax for declaring a .Net method as a function
Declare Method SayHello

Class "MapBasicMethods.Demo" Lib "MBMethods.dll"
(ByVal strName As String) As Integer
258 MapBasic 11.5

Chapter 12: Working with .Net
Getting Started
In this example, we will call the method by its actual name, "SayHello". (You could refer to the
method with an alias, using the Alias clause; but for this simple example, it is not necessary to use
an Alias. You only need to use the Alias clause when you need to differentiate multiple functions that
have the same name.)

The Class clause specifies the class name as "MapBasicMethods.Demo" because our source code
specified that "MapBasicMethods" is the namespace, and "Demo" is the class name.

The Lib clause specifies the name of the assembly file as "MBMethods.dll"; your assembly name will
depend on your project settings in Visual Studio.

The argument list matches the argument list of the .Net method: one by-value String argument.

The return type matches the return type of the .Net method. The MapBasic "Integer" type is a 4-byte
integer, which is equivalent to the C# "int" type (also known as System.Int32).

Once your Declare Method statement is in place, you can call your .Net method just as you would
call any other MapBasic function. For example:

' MapBasic syntax for calling a .Net method
Dim i As Integer
i = SayHello("Fred")

If your .Net method does not have a return value (i.e. it is a Sub rather than a Function, or it is a C#
void method), or if you simply want to ignore the return value, omit the final "As" clause from the
Declare Method statement. For example:

' MapBasic syntax for declaring a .Net method as a sub
Declare Method SayHello

Class "MapBasicMethods.Demo" Lib "MBMethods.dll"
(ByVal strName As String)

Declare Sub Main

Sub Main
Call SayHello("Fred")

End Sub

Compile and run the MapBasic program. When your .MBX calls the SayHello method, your .Net
assembly is loaded and your static method is called.

Note that if your Declare Method statement contains errors (such as misspelling the Class name),
your MapBasic program may still compile, but the method call will fail when you try to run your .MBX.
Your assembly name, class name, method name and method argument list are not validated until
you actually call the method at run-time.

Calling a Method by an Alias
If the method name that you specify in a Declare Method statement is the same as one of the
existing Function or Sub routine names in your MapBasic program, your program will not compile,
because a MapBasic program cannot allow multiple routines to use the same name. To correct this
error, add the Alias clause to the Declare Method statement. Within the Alias clause, you specify the
.Net method’s original name; then, you change the fname argument – the argument that follows the
MapBasic 11.5 259 User Guide

Getting Started
Method keyword -- to be a unique name (i.e. a function name that is not already in use). In the
following example, we call a .Net method that is defined with the name “ShowDialog”, but within the
.MB source code, we call the method by the name “ShowPointDialog”:

Declare Method ShowPointDialog
 Class "MyProduct.MyWrapper"
 Lib "MyAssembly.DLL" Alias ShowDialog () As Integer

Dim i As Integer
i = ShowPointDialog()

Passing Arguments to .Net
Some MapBasic variable types, such as Pen and Brush, cannot be passed to a .Net method. The
following table summarizes how MapBasic variable types correspond to .Net data types.

Arguments can be array types. For example, if your .Net method takes an argument that is an array
of Integer values, the Declare Method statement might look like this:

Declare Method ProcessIntegerArray
 Class "MyProduct.MyWrapper" Lib "MyAssemblyName"
 (idNumbers() As Integer)

Arguments can be passed by-reference or by-value. The syntax for specifying by-ref vs. by-val
varies from language to language. The following table demonstrates how you might pass String
arguments by-val vs. by-ref in various cases.

You cannot resize a MapBasic array variable within your .Net method.

MapBasic type .Net type VB.NET type C# Type

SmallInt System.Int16 Short short

Integer System.Int32 Integer int

Float System.Double Double double

String(both variable- and
fixed-length)

System.String String String

Logical System.Boolean Boolean bool

Types (aka structures) Varies; see below

All Other MapBasic Types n/a n/a n/a
260 MapBasic 11.5

Chapter 12: Working with .Net
Working with Structures in .Net
MapBasic can only pass array arguments and structure arguments ByRef.

Performance Notes
The speed of calling a .Net method depends on how much data you pass via the argument list. The
more data you pass as arguments, the longer the call will take.

If you find that the execution speed of calling .Net methods is not satisfactory, try to minimize the
amount of data that you pass via the argument list.

Working with Structures in .Net

Passing Custom Variable Types (Structures) to .Net
MapBasic programs can pass structures (custom variable types created using the Type statement)
to .Net, but some restrictions apply, and you need to do some additional work in .Net – namely,
creating an appropriate Class definition in .Net to represent the structure.

When you want to pass a MapBasic structure to a .Net method, you must do the following in your
.MB code:

1. Use the MapBasic Type statement to define your MapBasic structure. (If you want to pass a
structure to .Net then you have probably already done this.)

2. Use the Declare Method statement to describe a .Net method signature, and include your
MapBasic Type in the method argument list.

3. Declare a variable of your structure type, and assign its field values.

4. Call the method, and pass the structure variable to the method call.

The following MapBasic code defines a structure type with 3 fields, then passes that structure type
to a .Net method.

The Type statement must come before the Declare Method statement, because the Type
name (in this example, ParcelInfo) is used within the Declare Method statement.

Type ParcelInfo

Language By-Reference Syntax By-Value Syntax

MapBasic str As String ByVal str As String

VB.Net ByRef str As String ByVal str As String

C# ref String str String str
MapBasic 11.5 261 User Guide

Working with Structures in .Net
idnum As Integer
descript As String
area As Float

End Type

Declare Method ShowParcelDialog
Class "MapBasicMethods.Demo" Lib "MBMethods.dll"
(p As ParcelInfo)

Declare Sub Main
Sub Main

Dim p As ParcelInfo
p.idnum = 23
p.descript = "Sample parcel"
p.area = 123.45

Call ShowParcelDialog(p)
End Sub

In this example we are passing a ParcelInfo data structure to a .Net method. The next question is:
how should the .Net method be written, so that it will be able to receive the data sent from
MapBasic?

When a .Net method needs to receive structure information sent from MapBasic, you need to do the
following:

1. Define a Class in .Net.

2. Give your Class a public constructor, and give this constructor an argument list that matches the
fields in your MapBasic structure. For example, if your MapBasic structure contains an integer, a
string, and a floating-point number, then your constructor’s argument list must also take an
integer, a string, and a floating-point number. (Your class can also have other constructors, but
MapInfo Professional/MapBasic will ignore those other constructors.)

3. Somewhere in one of your .Net classes, write a public static method (the method that you will call
from MapBasic). Add an argument to this method, and define the argument type as the Class
you created in step 1.

The following C# code sample demonstrates how to create a Parcel class that corresponds to the
ParcelInfo structure described above:

public class Parcel
 {
 private int m_ID;
 private string m_Description;
 private double m_Area;

 public Parcel(int idnum, string description, double area)
 {
 m_ID = idnum;
 m_Description = description;
 m_Area = area;
 }
262 MapBasic 11.5

Chapter 12: Working with .Net
Working with Structures in .Net
 // TODO: You will probably find it useful to create a Property
 // for the ID, and for the Description, and for the Area.
 // MapInfo/MapBasic do not require that Properties exist.
 }

Having defined the Parcel class, you can now define a public static method that takes an argument
of type Parcel.

public static int ShowParcelDialog(Parcel parc)
 {
 // Here you would write code to display the
 // parcel information in a dialog box...
 MessageBox.Show("Hello, world");
 return 0;
 }

Now your MapBasic program can pass a ParcelInfo structure to the ShowParcelDialog method.
While your MapBasic program sends a structure to the method call, the ShowParcelDialog method
receives an object of the appropriate type; MapInfo Professional converts the structure to the
appropriate .Net type, so that the method call can be performed. (This is why you are required to put
a public constructor on your .Net class – MapInfo Professional needs the public constructor so that it
can convert the MapBasic data structure into an appropriate type of .Net object.)

When you pass a MapBasic structure to your .Net method, the call succeeds only if the argument’s
.Net class has a public constructor with arguments that match the fields in the MapBasic structure. If
no such constructor exists, your MapBasic program will produce a run-time error when it attempts to
call the method. Note that this is a run-time error condition; the MapBasic compiler cannot detect this
type of problem at compile-time.

In some cases, you might not start out with an existing MapBasic Type structure as your “given” –
instead, you might start out with a pre-existing .Net method signature. Suppose you want to call a
.Net method that has already been written, and this existing method expects one argument: a
System.Drawing.Point object.

public static void ShowPointDialog(System.Drawing.Point p)
{
 MessageBox.Show("p.x is: " + p.X + ", p.y is: " + p.Y);
}

This method’s argument does not match any of the standard MapBasic variable types, such as
Integer or String. Therefore, if you want to call this method from MapBasic, you will need to define a
MapBasic structure that approximates the .Net argument type (System.Drawing.Point, in this case).
The following MapBasic example shows the appropriate syntax:

Type Location
 ix as Integer
 iy as Integer
End Type

Declare Method ShowPointDialog
 Class "MyProduct.MyWrapper"
 Lib "MyAssembly.DLL" (pnt As Location)

. . .
MapBasic 11.5 263 User Guide

Working with Structures in .Net
Dim loc As Location
loc.ix = 23
loc.iy = 42

Call ShowPointDialog(loc)

In this example, MapInfo Professional will try to convert the MapBasic structure into a .Net
System.Drawing.Point object, by calling a public constructor on the Point class. This conversion
process is similar to what happened in the previous example, with one important difference: In this
case, you did not have to write the .Net Point class, because it already exists – it is a class provided
by Microsoft.

Because the MapBasic Location structure contains two Integer fields, MapInfo Professional will try to
find a public constructor on the Point class that takes two integers. The fields from the MapBasic
structure are passed to the .Net constructor, thus creating a .Net Point object. The Point object is
passed to the method to complete the call.

Some .Net classes do not have public constructors. For example, the System.Drawing.Color
structure does not have public constructors; therefore, it is impossible to define a MapBasic
structure that approximates a System.Drawing.Color object. If you need to pass color information to
your .Net method, give your method separate red, green, and blue arguments. Then, inside your
.Net method you can combine those values to form a .Net Color.

Public Shared Sub ShowColorDialog(ByRef r As Integer, ByRef g As Integer,
ByRef b As Integer)

 Dim c As Color
 Dim dlg As ColorDialog
 dlg = New ColorDialog
 dlg.Color = Color.FromArgb(r, g, b)
 If (dlg.ShowDialog = DialogResult.OK) Then
 c = dlg.Color
 r = c.R
 g = c.G
 b = c.B
 End If
End Sub

In this example we are instantiating objects, such as the ColorDialog, and calling non-static methods
on those objects. As stated earlier, MapBasic programs (.MB source code) can only call static
methods; however, the .Net code that you write inside your static method has no such restriction.
Inside your static method, your .Net code can instantiate objects, and use those objects to call non-
static methods (instance methods).

Restrictions of Passing Structures
If you pass MapBasic structures to .Net, you may need to give your .Net methods unique names.
Note that .Net allows a class to have multiple methods with the exact same name (as long as the
argument lists are different); MapBasic, however, is more restrictive. If you pass MapBasic
structures to .Net, and if your .Net class has multiple methods with the same name and the same
number of arguments, then MapBasic might not be able to determine which of the methods you want
264 MapBasic 11.5

Chapter 12: Working with .Net
Exception Handling
to call. In this situation your MapBasic program will produce a run-time error when you attempt to call
the .Net method. The simplest way to resolve this type of ambiguity is to use a unique method name
for any .Net method to which you will be passing a structure.

If you pass a structure to a .Net method, and the .Net method modifies the object passed to it, the
corresponding MapBasic structure is not modified. If you need to have your.Net method update your
MapBasic argument variables, use ByRef scalar variable arguments (such as “ix As Integer”) rather
than structures.

Exception Handling
An unhandled exception in a .Net method will cause a runtime error in your MapBasic application
(MapBasic error code 1666). Any unhandled runtime error in a MapBasic application will halt the
.MBX; therefore, you will want to handle all such errors. You can choose whether you prefer to trap
your error conditions in your .Net code, or in your .MB code.

The .Net error handling mechanism (try-catch-finally blocks) is more robust than the error handling
provided in MapBasic. Therefore, it is generally preferable to catch exceptions in your .Net code,
rather than allowing exceptions to propagate to your .MB program. However, if you do not want to or
for some reason cannot catch an exception in your .Net method, you can handle the resulting
runtime error in your .MB program, using MapBasic's OnError statement.

The following code demonstrates the MapBasic error-trapping syntax:

Sub MakeExternalCall

OnError Goto caughtit
Call DoSomething() ' Call a .Net method
g_status = 0 ' set result code; 0 = success
Exit Sub

caughtit:

' Code only comes here if method call caused an error.
if Err() = 1666 Then

' Code comes here if we called the .net method,
' but the .net method threw an unhandled exception.
' TODO: Look at Error$() to determine exact exception
g_status = -1

else
' Other Err codes might indicate that the method was
' not called, possibly due to a typo in Declare Method
Note "Check Declare Method statement. Error: " + Error$()
g_status = -2

end if

End Sub
MapBasic 11.5 265 User Guide

Working with the GAC
Working with the GAC

Loading an Assembly from the Global Assembly Cache (GAC)
The Declare Method statement's Lib clause identifies a .Net assembly. If the assembly file is in the
same directory as the .MBX file, the Lib clause can simply identify the assembly by its file name
(such as "mbtools.dll" or simply "mbtools").

If you are using an assembly that has been registered in the GAC, there is no need to copy the .DLL
file to the same directory as the .MBX file. However, when you reference an assembly from the
GAC, your Lib clause must provide more information, because the GAC might contain more than
one version of an assembly. In this situation, the Lib clause needs to specify a fully-qualified
assembly name.

The following example shows how to reference the System.IO.File.Delete method, which is in
Microsoft's mscorlib assembly:

Declare Method Delete
Class "System.IO.File"
Lib "mscorlib, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089"
(ByVal path as string)

For more information on registering an assembly in the GAC, or on fully qualified assembly names,
consult the .Net documentation from Microsoft.

The following example demonstrates how to declare methods in assemblies that are registered in
the GAC. Note that when an assembly is loaded from the GAC, the Lib clause must specify a fully-
qualified assembly name. Various utilities exist that can help you to identify an assembly's fully-
qualified name, including the gacutil utility provided by Microsoft as part of Visual Studio.

' Declare a method from the System.Windows.Forms.dll assembly:
Declare Method Show
 Class "System.Windows.Forms.MessageBox"
 Lib "System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"
 (ByVal str As String, ByVal caption As String)

' Declare a method from the mscorlib.dll assembly:
Declare Method Move
 Class "System.IO.File"

 Lib "mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

 (ByVal sourceFileName As String, ByVal destFileName As String)

' Display a .Net MessageBox dialog box with both a message and a caption:
Call Show("Table update is complete.", "Tool name")

' Call the .Net Move method to move a file
Call Move("C:\work\pending\entries.txt", "C:\work\finished\entries.txt")
266 MapBasic 11.5

Chapter 12: Working with .Net
Controlling MapInfo Professional from Within a .Net Method
Controlling MapInfo Professional from Within a .Net Method
The MapInfo Professional installation includes a .Net assembly, miadm.dll, which supports
MapBasic / .Net interoperability. You may find some of these "interop" methods useful because they
allow you to execute MapBasic statements from within a .Net method.

For example, imagine you have written a .Net "Map Properties" dialog box that contains various
map options, plus OK, Cancel, and Apply buttons. Suppose the dialog box can be used as follows:

1. Your MapBasic program calls a .Net method to display your .Net dialog box.

2. The user selects various options within the dialog box, then clicks the Apply button to apply the
changes.

3. The MapInfo Professional map window is updated immediately; however, because the user
clicked Apply (as opposed to OK), the dialog box remains on the screen.

4. Later, after the user finally dismisses the dialog box, the .Net method returns.

To update a map window, you use a MapBasic statement such as Set Map. However, in this
example, the Set Map statement needs to be executed from within .Net code, because in this
example, we are updating the map before the .Net method has returned.

MapInfo Professional's COM interface provides a Do method, which allows you to execute
MapBasic statements, and an Eval method, which allows you to retrieve information about the state
of MapInfo Professional. If you have written any Integrated Mapping applications, you are already
familiar with the Do and Eval methods; see Integrated Mapping on page 209 for more details.

The MapInfo.MiPro.Interop.InteropServices class gives .Net programmers easy access to MapInfo
Professional's Do and Eval methods. The InteropServices class has a MapInfoApplication property
that gives you a reference to the MapInfoApplication object. The MapInfoApplication class, in turn,
provides the Do and Eval methods.

For an example of using Do and Eval, see the Named Views sample application installed with
MapBasic (see Samples\DotNet\NamedViews). The Named Views application calls the Eval method
to determine the window ID of the active map window:

private static int GetFrontWindow()
{

string evalResult =
InteropServices.MapInfoApplication.Eval("FrontWindow()");

return Int32.Parse(evalResult);
}

Similarly, the Named Views application uses the Do method to issue a Set Map statement from
within .Net code:

InteropServices.MapInfoApplication.Do(string.Format(
"Set Map Window {0} Center ({1}, {2}) Zoom {3}",
windowId, centerX, centerY, mapperZoom));
MapBasic 11.5 267 User Guide

Controlling MapInfo Professional from Within a .Net Method
Before you can use the MapInfo.MiPro.Interop.InteropServices class, your .Net project must include
a reference to the miadm.dll assembly. . The assembly is located in the MapInfo Professional install
directory.

If you encounter any errors while building the Named Views sample project, you may need to
re-create the miadm.dll reference in the Visual Studio project, so that it specifies the current
location for the assembly.

The MapInfoApplication class is a wrapper class, which gives .Net programmers easy access to
MapInfo Professional's COM interface. This class is provided as a convenience, so that you may
access methods, properties and events through a standard .Net class, instead of dealing with the
COM interface directly. In addition to providing the Do and Eval methods shown above, the
MapInfoApplication class also provides the properties and events listed below.

MapInfoApplication members
Methods

Do
Executes a MapBasic statement, as if you had typed the statement into the MapBasic
window

Eval
Evaluates a MapBasic expression, and returns the result, as a string

Properties

FullName
Gets the full path to the application executable

LastErrorCode
Gets an integer representing the last MapBasic error that occurred during a Do or Eval
method call

LastErrorMessage
Gets the error message associated with LastErrorCode

Name
Gets the application name

Version
Gets the version number string, representing the version number, multiplied by 100

Events

MenuItemClick
Occurs when the user selects a custom menu item defined with the syntax: Calling OLE
"MenuItemHandler"

StatusBarTextChanged
Occurs when the MapInfo Professional status bar text changes

WindowContentsChanged
Occurs when the contents of the map window change (such as when a map is zoomed in or
out)
268 MapBasic 11.5

Chapter 12: Working with .Net
Integrated Mapping in .Net
Integrated Mapping in .Net
Integrated mapping is an application architecture where you write your own application (the "client"
application), which your users could launch instead of launching MapInfo Professional. Your
application would then launch MapInfo Professional silently, in the background, so that you can
display MapInfo maps within your application's user interface.

The following section describes how to write an integrated mapping application using .Net. For a
general discussion of integrated mapping concepts and rules, see the Integrated Mapping chapter.

The MapBasic installation includes a sample .Net integrated mapping application; see
samples\DotNet\IntegratedMapping. You might find it useful to refer to the sample application as you
read this section.

Accessing MapInfo Professional through COM
In an integrated mapping application, you will use MapInfo Professional's COM interface. Before you
can do this, you need to add a Reference in your Visual Studio project:

1. Create a Visual Studio project.

2. In the Solution Explorer window, right-click the References folder and select Add Reference.

3. In the Add Reference dialog box, go to the COM tab.

4. Choose MapInfo 11.5 OLE Automation Type Library and click OK.

Visual Studio will generate mapinfo.interop.dll which provides .Net wrapper classes to access
MapInfo Professional's COM interface. Now your application can reference the MapInfoApplication
class. In the sample application, this class is initialized at the top of the
MapForm.InitializeComObject method:

_mapInfoApp = new MapInfoApplication();

Once the _mapInfoApp object is initialized, you can use its Do method to execute MapBasic
statements (which is analogous to typing statements into MapInfo Professional's MapBasic
Window), or use its Eval method to retrieve information from MapInfo Professional.

In particular, you will be using the Do method to execute the following MapBasic statements:

1. Set Application Window -- this allows you to use MapInfo dialog boxes in your client
application.

2. Open Table -- this statement opens MapInfo tables.

3. Set Next Document Parent -- this statement puts MapInfo Professional into a special state, so
that the next Map window opened will be "re-parented" so that it appears within your client
application.

4. Map From -- this statement creates a Map window.

The sample application demonstrates the use of these statements; for examples, search the
MapForm class for calls to the Do method.
MapBasic 11.5 269 User Guide

Integrated Mapping in .Net
Callback Methods
In some cases, integrated mapping applications need to provide callback methods. If your
application needs to execute code whenever certain events occur -- for example, if you need to
execute code whenever the user alters the map -- then you will need to set up a callback method, so
that MapInfo Professional can call your callback method every time that event occurs.

MapInfo Professional will call the following callback methods:

• The WindowContentsChanged method is called by MapInfo Professional whenever the
contents of the map window change (e.g. when a layer is added or removed)

• The SetStatusText method is called by MapInfo Professional whenever anything happens that
would alter the text on the MapInfo Professional status bar.

• Any custom OLE menu item has a handler method; the name of the handler method is specified
in the client application. The sample application defines one custom OLE menu item and
specifies MenuItemHandler as the handler name. This method name also appears in the
MapBasic statement that defines the custom menu item (the Create Menu statement or the Alter
Menu...Add statement).

In the sample application, these callbacks are represented by the IMapInfoCallback interface. The
C# version of the interface, from MapInfoCallback.cs, looks like this:

public interface IMapInfoCallback
{

// Method called by MapInfo Professional when window changes
int WindowContentsChanged(UInt32 windowID);

// Method called by MapInfo Professional when the status bar text
changes

int SetStatusText(string message);

// Method called by MapInfo Professional when user chooses custom OLE
menuitem

void MenuItemHandler(string commandInfo);
}

The Visual Basic version of the interface, from MapInfoCallback.vb, looks like this:

Public Interface IMapInfoCallback
' Method called by MapInfo Professional when window changes
Function WindowContentsChanged(ByVal windowID As UInt32) As Integer

' Method called by MapInfo Professional when the status bar text
changes

Function SetStatusText(ByVal message As String) As Integer

' Method called by MapInfo Professional when user chooses custom OLE
menuitem

Sub MenuItemHandler(ByVal commandInfo As String)
End Interface
270 MapBasic 11.5

Chapter 12: Working with .Net
Integrated Mapping in .Net
The same source code module contains the MapInfoCallback class, which demonstrates how to
implement the IMapInfoCallback interface. Note that the MapInfoCallback class has attributes to
mark the class as COM-visible, so that MapInfo Professional will be able to call the methods. The C#
syntax for the class attributes:

[ClassInterface(ClassInterfaceType.None)]
[ComVisible(true)]
public class MapInfoCallBack : IMapInfoCallback

The VB version of the class attributes:

<ClassInterface(ClassInterfaceType.None)> _
<ComVisible(True)> _

 Public Class MapInfoCallBack
 Implements IMapInfoCallback

In the same file where the IMapInfoCallback interface is defined, there is a second interface,
ICallbackNotify. Implement this interface in your Windows Forms application. In the sample
application, this interface is implemented in MapForm.cs or MapForm.vb.

Events can cause MapInfo Professional to call the callback (IMapInfoCallback) class, which in turn
notifies the client (ICallbackNotify) class. For a better understanding of how and when the various
interface methods are called, consider the following sequence of events:

1. The user runs the Integrated Mapping client application, which silently launches MapInfo
Professional. In the sample application, this happens in the MapForm.InitializeComObject
method. This method launches MapInfo Professional, instantiates the callback object, and
registers the callback object with MapInfo Professional:
private void InitializeComObject()
{

// Create the MapInfo Professional object
_mapInfoApp = new MapInfoApplication();

// Set parent window for MapInfo Professional dialogs
_mapInfoApp.Do("Set Application Window " + this.Handle);

// Create the callback object
_callbackObject = new MapInfoCallBack(this);

// Register the callback object with Professional
_mapInfoApp.RegisterCallback(_callbackObject);

}

2. The client application calls the MapInfoApplication.Do method to open tables and map windows.
In the sample application, this happens in the MapForm.NewMap method, which is called when
the user has chosen File > Open to open one or more .tab files.

3. The user modifies the map in some way. In the sample application, the user can select Layer
Control from the map window's right-click menu, then use the dialog box to modify the map.
MapInfo Professional manages the Layer Control window.

4. Because the map has been modified, MapInfo Professional notifies the client app by calling the
MapInfoCallback.WindowContentsChanged method.
MapBasic 11.5 271 User Guide

Integrated Mapping in .Net
5. The WindowContentsChanged method calls the MapForm.OnWindowContentsChanged
method. The code to be included in this method will depend on the purpose of the application.
For example, if your application displays information about the map, on the status bar or
elsewhere in your form, then you might want to update your form in the
OnWindowContentsChanged method.

6. If the application includes a custom OLE menu item, MapInfo Professional calls the menu item's
handler method whenever the user selects the menu item. In the sample application, the Alter
Menu statement adds an item to the map's context menu, and specifies "MenuItemHandler" as
the handler name. Therefore, if the user selects the custom menu item, MapInfo Professional
calls the MenuItemHandler method, which then calls the MapForm.OnMenuItemClick method.
The code to be included in the OnMenuItemClick method will depend on the purpose of the
custom menu item.

7. Whenever the user does something that would cause MapInfo Professional to modify the text on
the status bar -- for example, clicking in the map to make a selection -- MapInfo Professional
calls the MapInfoCallback.SetStatusText method. This method calls the
MapForm.OnStatusBarTextChanged method. If you want to make your client application's
status bar look like the MapInfo Professional status bar, you could add code to the
OnStatusBarTextChanged method to update your status bar.

8. On exit, we un-register the callback object. In the sample application, this happens in the
FormClosed method.

private void Form1_FormClosed(object sender, FormClosedEventArgs e)
{

// Unregister the callback object
MapInfoApp.UnregisterCallback(_callbackObject);

}

The sample application defines one custom OLE menu item. If your application defines multiple OLE
menu items, you can have each menu item call its own designated handler method. Or, you can
have all of your OLE menu items call the same handler method -- but, if you do, then you will need to
give each custom menu item an ID number (by including the ID clause in the Create Menu or Alter
Menu...Add statement) so that the handler method can determine which menu item the user
selected.

Note that the MapInfoCallback class is re-usable. You could write several different integrated
mapping applications, and use the same MapInfoCallback class with each of those applications.

Thread Safety Issues
To understand the sample MapInfoCallback class, you must first understand how multi-threading
can affect a Windows Forms user interface. When you want to execute code that will manipulate
your Windows Forms user interface -- for example, if you want to change the text displayed on the
form's status bar -- you must make sure that the code is executing on the same thread that was used
to create the user interface.

It is likely that callback methods will execute on a different thread than the thread that created your
user interface. Therefore, your callback methods must detect and correct any thread safety issues
before executing any code that affects your user interface.
272 MapBasic 11.5

Chapter 12: Working with .Net
Integrated Mapping in .Net
The Windows Forms Control class provides an InvokeRequired property. If InvokeRequired is true, it
indicates that the current thread is not the correct thread for updating the Control, in which case, you
must use the Control.Invoke method to apply any changes to the Control. The Invoke method
ensures that the change is applied on the appropriate thread.

For example, the sample MapInfoCallback.SetStatusText method contains the following code, which
ensures that any changes made to the status bar occur on the appropriate thread:

if (_callbackClient.InvokeRequired)
{

_callbackClient.Invoke(this._onStatusBarTextChangedDelegate, new
Object[] { text });

}
else
{

_callbackClient.OnStatusBarTextChanged(text);
}

Note that we are using the _callbackClient object (an object that implements ICallbackNotify) to
access the InvokeRequired property and the Invoke method. In the sample application, the Form
class serves as the ICallbackNotify object:

public partial class MapForm : Form, ICallbackNotify

In the sample application, the _callbackClient member is a reference to the MapForm. Since the
Form class derives from Control, we are able to call _callbackClient.Invoke.

Do not perform the callback un-register operation in a destructor method, as that method will
probably be called from an incorrect thread.
MapBasic 11.5 273 User Guide

Integrated Mapping in .Net
274 MapBasic 11.5

A

Sample Programs
The MapBasic software includes the following sample program files.

Additional examples may have been added after the printing of this
manual.

Topics in this section:

Samples\Delphi Directory .276
Samples\DLLEXAMP Directory .276
Samples\DotNet Directory .276
Samples\MapBasic Directory .276
Samples\MFC Directory .283
Samples\PwrBldr Directory .284
Samples\VB4 Directory .284
Samples\VB6 Directory .284

Samples\Delphi Directory
Samples\Delphi Directory
tabmap: run MapInfo Professional as an OLE server using Delphi.

Samples\DLLEXAMP Directory

Samples\DLLEXAMP\Loadlib Directory

loadlib.mb: The files in this directory are the source code to a C language DLL that can be compiled
for either Win16 or Win32, and a test program written in MapBasic that exercises the function in the
DLL.

Samples\DLLEXAMP\ResDLL Directory

Contains sample programs to demonstrate techniques for Win16 & Win32 compatibility.

Samples\DotNet Directory

Samples\DotNet\GoogleConnect Directory

A MapBasic utility to send map views or selections to Google Earth.

Samples\DotNet\HelloWorld Directory

Simple of calling a .Net method from MapBasic (C# and VB.Net versions)

Samples\DotNet\IntegratedMapping Directory

Integrated Mapping client application written in .Net (C# and VB.Net versions)

Samples\DotNet\NamedViews Directory

Named Views MapBasic tool, which uses .Net for managing XML files and dialog boxes (C# and
VB.Net versions). The Named Views application lets you define named views, which act as
bookmarks that let you return to that map view at a later time.

Samples\MapBasic Directory
The Samples\MapBasic\ directory contains subdirectories that include sample program files. The
contents of each subdirectory is described in the following sections.

Samples\MapBasic\ANIMATOR Directory

Animator.mb: demonstrates how Animation Layers can speed up the redrawing of Map windows.
276 MapBasic 11.5

Chapter A: Sample Programs
Samples\MapBasic Directory
Samples\MapBasic\APPINFO Directory

AppInfo.mb: retrieves information about the MapBasic applications that are currently running.

Samples\MapBasic\AUTOLBL Directory

AutoLbl.mb: “labels” a map by placing text objects in the Cosmetic layer (emulating the way earlier
versions of MapInfo Professional created labels).

Samples\MapBasic\GOGOLINE Directory

COGOLine.mb: draws a line at a specified length and angle.

Samples\MapBasic\CoordinateExtractor Directory

Coordinateextractor.mb: updates two columns with the x and y coordinates in the table’s native
projection or a user selected projection for each object in the table.

Samples\MapBasic\CSB Directory

CoordSysBounds.mb: enables you to check and set the coordinate system bounds of any
mappable MapInfo base table.

Samples\MapBasic\DATABASE Directory

Autoref.mb: refreshes linked tables every (Interval) seconds

BuildSQL.mb: allows you to connect to DBMS databases; build, save, and load queries; run
queries and preview or download the results.

Connect.mb: provides the MapInfo DBMS Connection Connection Manager dialog box and related
functions. The connection manager allows you to select an existing connection to use, disconnect
existing connections, and get new connections.

DescTab.mb: provides a dataLink utility function that given a table opens a dialog box that
describes it.

DLSUtil.mb: returns the list value at the selection index for Dialog Box List control processing.

GetMITab.mb: MapInfo Professional table picker dialog box.

MIODbCat.mb: This is the DBMS Catalog tool that is loaded from the MapInfo Professional Tool
Manager. This allows the database administrator to create a MapInfo Professional User with the with
a MAPINFO_MAPCATALOG table. It also allows the DBA to delete a table from the catalog.

MIRowCnt.mb: This is the DBMS Count Rows in Table tool that is loaded from the MapInfo
Professional Tool Manager. This tool lets you connect to DBMS databases and run a count(*)
against tables, updating the mapcatalog with the results.

MISetMBR.mb: This is the CoordSysBounds tool that is loaded from the MapInfo Professional Tool
Manager. This tool allows the DBA to change the bounds of a table in the MapInfo_MAPCATALOG
table.
MapBasic 11.5 277 User Guide

Samples\MapBasic Directory
MIUpldDB.mb: This tool provides the ability to generate the Database specific SQL statements
allowing you to upload a MapInfo table.

MIUpLoad.mb: This is the Spatialize SQL Server Table tool that is loaded from the MapInfo
Professional Tool Manager. This tool provides the ability to upload a MapInfo table to a remote
database with spatial column information. The Spatial columns are used with DBMS linked tables,
which allows a remote database table to be mappable in MapInfo Professional.

PickCol.mb: This tool provides a server table column picker dialog box.

PickSel.mb: This tool provides a selection picker dialog box as part of the BuildSQL.mbx.

PickTab.mb: This tool provides functions to get a list of server database tables, and table owners
(schemas), and contains a generic function that provides a table selection dialog box.

PrepSQL.mb: This tool provides a SQL Query prepare function that processes query parameters.
The parameters are bound here (resolved and replaced with a value).

SQLPVW.mb: This tool resolves each parameter to a value and return the resolved SQL query
string given an SQL query string with embedded parameters of a specific format.

SQLUtil.mb: This tool provides many utility functions that enable Mapinfo to access to ODBC data.

SQLView.mb: This tool provides a SQL DataLink application for testing the
SERVER_COLUMNINFO function for all options (except VALUE).

Samples\MapBasic\DeleteDuplicates

DeleteDuplicates.mb: This tool allows the user to delete duplicate records from a table while
retaining map objects. The user may also select whether they want a 'Count' column added to the
newly created table.

Samples\MapBasic\DISPERSE Directory

disperse.mb: This tool provides a takes points at given coordinates and disperses them either
randomly or systematically.

Samples\MapBasic\DistanceCalc

DistanceCalc.mb: The Distance Calculator tool can be used to calculate the distance from a
selected object (or group of objects) to the closest or farthest object(s). You can also specify criteria
to limit the results.

Samples\MapBasic\DMSCNVRT Directory

DMSCnvrt.mb: This tool converts between columns of Degree/Minute/Second coordinates and
columns of decimal-degree coordinates.

Samples\MapBasic\FTPLib

FilesManager.mb: A MapBasic sample program to demonstrate the usage of MapInfo HTTP/FTP
library API to receive/send/search files from/to FTP server.

FTPtest.mb: A MapBasic sample program to demonstrate the usage of MapInfo HTTP/FTP library
API to receive/send/search files from/to FTP server.
278 MapBasic 11.5

Chapter A: Sample Programs
Samples\MapBasic Directory
Samples\MapBasic\GEOSET Directory

Geoset.mb: This tool enables you to create a MapX or MapXtreme Geoset from the layers and
settings of a MapInfo Professional Map window, or to read a MapX or MapXtreme Geoset files to
load the corresponding tables and layer settings to a MapInfo Professional Map window.

Samples\MapBasic\GRIDMAKR Directory

GridMakr.mb: This tool creates a grid (graticule) of longitude/latitude lines.

Samples\MapBasic\HTMLImageMap Directory

HTMLImageMap.mb: This tool creates a clickable HTML image map from a MapInfo Professional
Map window for use in a web browser.

Samples\MapBasic\HTTPLIB

HTTPUtil.mb: A sample program to demonstrate how to wrap MapInfo HTTP/XML library internet
APIs into MapBasic functions/subs.

MapUtils.mb: A sample program of MapBasic functions/subs to help with map-associated activities.

TrafficInfo.mb: A sample program to demonstrate how to use the MapInfo HTTP/XML library API to
get traffic information from Yahoo.

XMLUtil.mb: A sample program to demonstrate how to wrap the MapInfo HTTP/XML library XML
APIs into MapBasic functions/subs.

YahooTrafficRSS.mb: A sample program to demonstrate how to use the MapInfo HTTP/XML
library API to get traffic information from Yahoo.

Samples\MapBasic\ICONDEMO Directory

IconDemo.mb: This tool demonstrates the built-in ButtonPad icons provided in MapInfo
Professional.

Samples\MapBasic\INC Directory

inc.mb: This directory contains include files that can be useful when programming in the MapBasic
environment.

Among these files are:

• Definition (.DEF) files used by various of the MapBasic tools installed with MapInfo Professional.
AUTO_LIB.DEF and RESSTRNG.DEF are needed by the Tool Manager registration system and
the tools’ string localization module, respectively (both of these are stored in the \LIB directory.)

• MAPBASIC.DEF contains, among other things, the definitions for general purpose macros,
logical constants, angle conversion, colors, and string length. These are used as inputs for
various MapBasic functions.

• MENU.DEF contains the definitions needed to access and/or modify MapInfo Professional's
dialog boxes, toolbars, and menu items.

• MAPBASIC.H is the C++ version of MAPBASIC.DEF plus MENU.DEF.
• MAPBASIC.BAS is the Visual Basic 6.0 version of MAPBASIC.DEF plus MENU.DEF.
MapBasic 11.5 279 User Guide

Samples\MapBasic Directory
Samples\MapBasic\LABELER Directory

labeler.mb: This tool allows you to transfer your layers labels into permanent text objects, label the
current selection, and use a label tool and individually label objects into permanent text objects.

Samples\MapBasic\LayoutTemplate

Layout templates that provide a convenient way to format print output.

CMSGrid.mb: This file contains helper routines used by CMSPrint.mb, for example a routine to print
a Browser window in the template.

CSPrint.mb: This file contains routines for rendering and printing objects, such as Map, Browser,
Label, Grid, Graph windows, in a Layout window.

CMSUtil.mb: The LayoutTmplt.mb file uses routines in this file for initializing the LayoutTemplate
tool. For example, it contains the routines that load and parse the ini file, check if a specific table is
open or not, and opens currently selected layers.

LayoutTemplt.mb: It is the primary file which loads and initializes the LayoutTemplate tool as per
settings defined in LayoutTemplate.ini (which typically is located under the
C:\Users\<USER>\AppData\Roaming\MapInfo\MapInfo\Professional\<version#>\LayoutTemplate
folder.

TmpltHndlr.mb: This file contains routines for manipulating templates for creating a new template;
deleting, editing, or renaming an existing template.

TmpltUtil.mb: This file contains some utility functions required by the LayoutTemplate tool.

Samples\MapBasic\LEGENDS Directory

Legends.mb: This tool allows you to manage two or more Legend windows in MapInfo
Professional. (The standard MapInfo Professional user interface has only one Legend window.)

Samples\MapBasic\LIB Directory

lib: This directory contains a library of functions and subroutines that can be useful when
programming in the MapBasic environment.

In particular, two of these files are used by many of the MapBasic tools installed with MapInfo
Professional:

• AUTO_LIB.MB is used by most tools to help register themselves into the Tools directory.
• RESSTRNG.MB is used by the localized tools to look up the appropriate language strings in the

tools’ .STR files.

Samples\MapBasic\LINESNAP Directory

linesnap.mb: This tool allows you to trim or extend a single-segment line to its intersection point
with another chosen line.

Samples\MapBasic\MAPWIZ Directory

mapwiz.mb: This tool provides a template which can be used to create a Tool Manager application.
280 MapBasic 11.5

Chapter A: Sample Programs
Samples\MapBasic Directory
Samples\MapBasic\NorthArrow Directory

northarrow.mb: This MapBasic program creates North Arrows.

Samples\MapBasic\PACKAGER Directory

packager.mb: This tool packages a copy of a workspace into a single directory for easier backups,
compression, or transfer between computers.

Samples\MapBasic\ProportionalOverlap

ProportionalOverlap.mb: This tool calculates proportional aggregates for objects in a target table
that overlap with objects in a base table. Calculation results are added to a new or to an existing
column in the target table, which you can then save.

Samples\MapBasic\RegVector Directory

regvector.mb: This tool allows you to copy a table of vector objects (regions, polylines, points, etc.)
from one location to another by specifying target locations for three points in the original table.

Samples\MapBasic\RINGBUF Directory

ringbuf.mb: this tool allows you to create multiple “donut” ring buffers. It also will calculate sums
and averages of underlying data within each ring.

Samples\MapBasic\RMW Directory

rotatemapwindow.mb: This tool enables you to rotate the contents of the current map window a
specific number of degrees.

Samples\MapBasic\RotateLabels Directory

rotatelabels.mb: This tool allows you to rotate labels.

Samples\MapBasic\RotateSymbols Directory

rotatesymbols.mb: This tool allows you to rotate symbols in a table.

Samples\MapBasic\SEAMMGR Directory

seammgr.mb: This tool creates and manages seamless map tables.

Samples\MapBasic\Send2MXM Directory

send2mxm.mb: This tool allows you to write custom MapX Geoset and associated .tab files to
create a user-defined subset of a map window's background data for display on a mobile device.

Samples\MapBasic\SHIELDS Directory

Shields.mb: This tool draws decorative frames around text objects. Note that this application only
works with true text objects, not map labels.
MapBasic 11.5 281 User Guide

Samples\MapBasic Directory
Samples\MapBasic\SNIPPETS Directory

The Snippets directory contains sample programs and code snippets that you can incorporate into
your custom MapInfo applications.

In addition to containing sample code snippets, this directory also contains three tools that
are installed with MapInfo Professional Tool Manager. These are the Named Views tool
[NVIEWS.MBX], the Overview tool [OVERVIEW.MBX] and the Scalebar drawing tool
[SCALEBAR.MBX].

acad.mb: uses DDE to communicate with AutoCAD for Windows.

addnodes.mb: This snippet adds nodes to objects. This can be useful if you intend to project a map;
the added nodes prevent slivers from appearing between regions in situations where a large region
has a long, straight edge.

geocode.mb: This snippet demonstrates how to geocode through MapBasic.

geoscan.mb: This snippet scans a table to predict a geocoding hit-rate.

get_tab.mb: This is a module, not a complete application. get_tab contains routines to display a
dialog box that presents the user with a list of open tables. For an example of using the get_tab
routines, see the OverView application.

nviews.mb: This snippet creates a “named views” application that lets you enter a name to describe
your current “view” of a map (current center point and zoom distance). Once a view is defined, you
can return to that view by double-clicking it from the Named Views dialog box. To link this
application, use the project file nvproj.mbp.

objinfo.mb: This snippet displays descriptive information about an object.

overview.mb: This snippet opens a second Map window to show an overview of the area in an
existing Map window. As you zoom in or out or otherwise change your view in the original map, the
overview window adjusts automatically. To link this application, use the project file obproj.mbp.

scalebar.mb: This snippet draws a distance scale bar on a map window. To link this application,
use the project file sbproj.mbp.

textbox.mb: This is the sample program used as an example throughout this manual. To link this
application, use the project file tbproj.mbp.

watcher.mb: uses DDE to communicate with Microsoft Excel; sets up an Excel worksheet to
monitor global variables in a MapBasic application.

Samples\MapBasic\SpiderGraph Directory

SpiderGraph.mb: This application draws lines between objects in a single table, or the objects from
two tables based on a join. It then creates a new table of lines that connect the objects from the
origin table to the objects from the destination table based on matching column values.

Samples\MapBasic\SRCHREPL Directory

srchrepl.mb: performs search-and-replace operations within a table.
282 MapBasic 11.5

Chapter A: Sample Programs
Samples\MFC Directory
Samples\MapBasic\SWSpatialize Directory

sw_spatialize.mb: This program allows an existing SQL Server table that has not been set up for
spatial data to be spatialized. When a SQL Server table is spatialized, it can have spatial data
inserted into and extracted from it.

Samples\MapBasic\SYMBOL Directory

symbol.mb: allows you to create/edit/delete MapInfo symbols. Editor that lets you customize the
MapInfo 3.0 symbol set.

Samples\MapBasic\SyncWindows Directory

syncwindows.mb: This program synchronizes mapper windows, creates objects in all mapper
windows, tiles windows, and clears cosmetic layter in all map windows.

Samples\MapBasic\TABLEMGR Directory

tablemgr.mb: This application lists all open tables in a list box and provides more information about
a table as the user clicks on it. Also allows the user to set some table properties and view table
metadata.

Samples\MapBasic\TEMPLATE Directory

toolapp.mb: This is a template for a MapInfo Professional tool application. To link this application,
use the project file toolapp.mbp

Samples\MapBasic\WINMGR Directory

winmgr.mb: This program allows you to set the title of a document window title and set the default
view for a table.

Samples\MapBasic\WorkspaceResolver

WorkspaceResolver.mb: This tool opens a workspace with references to tables that no longer
exist. It performs a search and replace for the missing tables or resolves the workspace file by
ignoring the missing tables. You can request to open or save a repaired version of the workspace.
The default is to open and save the resolved workspace.

Samples\MFC Directory
FindZip: This application demonstrates how Integrated Mapping allows you to integrate elements of
MapInfo Professional into a C++ program written using Microsoft Foundation Class (MFC).

mdimfc: An Integrated Mapping application using C++.
MapBasic 11.5 283 User Guide

Samples\PwrBldr Directory
Samples\PwrBldr Directory
Capitals: An Integrated Mapping application using PowerBuilder.

The PowerBuilder runtime libraries are not provided; you must already have PowerBuilder
libraries installed to run this application.

Samples\VB4 Directory
Callback: OLE automation callbacks.

FindZip: This application demonstrates how Integrated Mapping allows you to integrate elements of
MapInfo Professional, such as a Map window, into a Visual Basic program. Requires Visual Basic
3.0 or later.

VMapTool: A demonstration of advanced Integrated Mapping tasks, such as callbacks. Requires
Visual Basic 4.0 Professional Edition or later.

Samples\VB6 Directory
Callback: OLE automation callbacks.

FindZip: This application demonstrates how Integrated Mapping allows you to integrate elements of
MapInfo Professional, such as a Map window, into a Visual Basic program. Requires Visual Basic
3.0 or later.

VMapTool: A demonstration of advanced Integrated Mapping tasks, such as callbacks. Requires
Visual Basic 4.0 Professional Edition or later.
284 MapBasic 11.5

B

Summary of Operators
Operators act on one or more values to produce a result. Operators can be
classified by the data types they use and the type result they produce.

Topics in this section:

Numeric Operators. .286
Comparison Operators .286
Logical Operators. .287
Geographic Operators .287
Automatic Type Conversions .288

Numeric Operators
Numeric Operators
The following numeric operators act on two numeric values, producing a numeric result.

Two of these operators are also used in other contexts. The plus sign (+) acting on a pair of strings
concatenates them into a new string value. The minus sign (–) acting on a single number is a
negation operator, producing a numeric result. The ampersand also performs string concatenation.

Comparison Operators
The comparison operators compare two items of the same general type to produce a logical value of
TRUE or FALSE. Although you cannot directly compare numeric data with non-numeric data (for
example, String expressions), a comparison expression can compare Integer, SmallInt, and Float
data types. Comparison operators are often used in conditional expressions, such as If…Then.

Operator Performs Example

+ addition a + b

– subtraction a - b

* multiplication a * b

/ division a / b

\ integer divide (drop remainder) a \ b

Mod remainder from integer division a Mod b

^ exponentiation a ^ b

Operator Performs Example

– numeric negation - a

+ string concatenation a + b

& string concatenation a & b

Operator Returns TRUE if: Example

= a is equal to b a = b

<> a is not equal to b a <> b

< a is less than b a < b
286 MapBasic 11.5

Chapter B: Summary of Operators
Logical Operators
Logical Operators
The logical operators operate on logical values to produce a logical result of TRUE or FALSE:

Geographic Operators
The geographic operators act on objects to produce a logical result of TRUE or FALSE:

> a is greater than b a > b

<= a is less than or equal to b a <= b

>= a is greater than or equal to b a >= b

Operator Returns TRUE if: Example

Operator Returns TRUE if: Example

And both operands are TRUE a And b

Or either operand is TRUE a Or b

Not the operand is FALSE Not a

Operator Returns TRUE if: Example

Contains first object contains the centroid of the
second

objectA Contains
objectB

Contains Part first object contains part of the second object objectA Contains Part
objectB

Contains Entire first object contains all of the second object objectA Contains Entire
objectB

Within first object’s centroid is within the second
object

objectA Within objectB

Partly Within part of the first object is within the second
object

objectA Partly Within
objectB
MapBasic 11.5 287 User Guide

Automatic Type Conversions
Precedence
A special type of operators are parentheses, which enclose expressions within expressions. Proper
use of parentheses can alter the order of processing in an expression, altering the default
precedence. The table below identifies the precedence of MapBasic operators. Operators which
appear on a single row have equal precedence. Operators of higher priority are processed first.
Operators of the same precedence are evaluated left to right in the expression (with the exception of
exponentiation, which is evaluated right to left).

For example, the expression 3 + 4 * 2 produces a result of 11 (multiplication is performed before
addition). The altered expression (3 + 4) * 2 produces 14 (parentheses cause the addition to be
performed first). When in doubt, use parentheses.

Automatic Type Conversions
When you create an expression involving data of different types, MapInfo Professional performs
automatic type conversion in order to produce meaningful results. For example, if your program
subtracts a Date value from another Date value, MapBasic will calculate the result as an Integer

Entirely Within the first object is entirely inside the second objectA Entirely Within
objectB

Intersects the two objects intersect at some point objectA Intersects
objectB

Operator Returns TRUE if: Example

Priority MapBasic Operator

(Highest Priority) parenthesis

exponentiation

negation

multiplication, division, Mod, integer division

addition, subtraction

geographic operators

comparison operators, Like operator

Not

And

(Lowest Priority) Or
288 MapBasic 11.5

Chapter B: Summary of Operators
Automatic Type Conversions
value (representing the number of days between the two dates). The table below summarizes the
rules that dictate MapBasic’s automatic type conversions. Within this chart, the token Integer
represents an integer value, which can be an Integer variable, a SmallInt variable, or an Integer
constant. The token Number represents a numeric expression which is not necessarily an integer.

Operator Combination of Operands Result

+ Date + Number Date

Number + Date Date

Integer + Integer Integer

Number + Number Float

Other + Other String

– Date – Number Date

Date – Date Integer

Integer – Integer Integer

Number – Number Float

* Integer * Integer Integer

Number * Number Float

/ Number / Number Float

\ Number \ Number Integer

MOD Number MOD Number Integer

^ Number ^ Number Float
MapBasic 11.5 289 User Guide

Automatic Type Conversions
290 MapBasic 11.5

C

Supported ODBC Table
Types
These are the ODBC data types that MapInfo Professional supports:

• SQL_BIT
• SQL_TINYINT
• SQL_SMALLINT
• SQL_INTEGER:
• SQL_REAL
• SQL_BIGINT
• SQL_DECIMAL
• SQL_DOUBLE
• SQL_FLOAT
• SQL_NUMERIC
• SQL_BINARY
• SQL_LONGVARBINARY
• SQL_VARBINARY
• SQL_LONGVARCHAR
• SQL_DATE
• SQL_TYPE_DATE
• SQL_TIMESTAMP
• SQL_TYPE_TIMESTAMP
• SQL_TIME
• SQL_TYPE_TIME
• SQL_CHAR
• SQL_VARCHAR

292 MapBasic 11.5

D

Making a Remote Table
Mappable
Topics in this Appendix:

Prerequisites for Storing/Retrieving Spatial Data294

Prerequisites for Storing/Retrieving Spatial Data
Prerequisites for Storing/Retrieving Spatial Data
There are four prerequisites for storing and retrieving points on an RDBMS table.

1. The coordinate values for the spatial data must be stored in columns of the table as numbers or
a supported spatial data type.
Possible methods for accomplishing this include:
• Existing data.
• Use Easyloader to upload to the database. This application will work for all supported

databases.
This is a data creation task and can be done at any time.

2. To increase performance on queries against the coordinates, a spatial index column can be
included. This is done as part of the sample upload applications, if it is desired. This is a data
creation task and can be done at any time.

3. MapInfo Professional stores information about which columns are the coordinates in a special
table on the RDBMS system known as the MapInfo Map Catalog. There must be one Map
Catalog per database. To create the Map Catalog use Easyloader or MIODBCAT.MBX. You can
also follow the procedure for manually creating a Map Catalog, described in Manually Creating
a MapInfo_MapCatalog in Appendix E on page 295. This is a once only task and is required
before ANY tables on that database can be mapped in MapInfo Professional.

4. MapInfo Professional gets catalog information about mappable tables using the MapBasic
statement Server Create Map. This is a once per table task and is required before this specific
table can be mapped in MapInfo Professional.
294 MapBasic 11.5

E

Manually Creating a
MapInfo_MapCatalog
These instructions are for manually creating a MapInfo Map Catalog and
making a remote table mappable, two procedures that are necessary for
geocoding remote tables. This information is designed for users who do not
have access to MapInfo Professional.

MapInfo Professional users would create a MapInfo Map Catalog automatically.

• Making a Remote Table Mappable
You or your database administrator must create one MapInfo Map Catalog for
each database you wish to access in MapBasic.

To create a MAPINFO_MAPCATALOG manually:

1. If the RDBMS requires owners and users, then create the user MAPINFO with the PASSWORD
MAPINFO in the specific database where the mappable tables are located.

2. Create the table MAPINFO_MAPCATALOG in the database.
The Create Table statement must be equivalent to the following SQL Create Table statement:

It is important that the structure of the table is exactly like this statement. The only substitution
that can be made is for databases that support varchar or text data types; these data types can
be substituted for the Char data type.

3. Create a unique index on the TABLENAME and the OWNERNAME, so only one table for each
owner can be made mappable.

4. Grant Select privileges to all users on the MAPINFO_MAPCATALOG. This allows users to make
tables mappable. The Update, Insert, and Delete privileges must be granted at the discretion of
the database administrator.

Spatial Index Types

This table lists the supported Spatial Index types.

Create Table MAPINFO_MAPCATALOG(

SPATIALTYPE
TABLENAME
OWNERNAME
SPATIALCOLUMN
DB_X_LL
DB_Y_LL
DB_X_UR
DB_Y_UR
VIEW_X_LL
VIEW_Y_LL
VIEW_X_UR
VIEW_Y_UR
COORDINATESYSTEM
SYMBOL
XCOLUMNNAME
YCOLUMNNAME
RENDITIONTYPE
RENDITIONCOLUMN
RENDITIONTABLE
NUMBER_ROWS

Float,
Char(32),
Char(32),
Char(32),
Float,
Float,
Float,
Float,
Float,
Float,
Float,
Float,
Char(254),
Char(254),
Char(32),
Char(32),
Integer,
VarChar(32),
VarChar(32),
Integer

)

Spatial Index Type Type Number

MapInfo MICODE schema (any database) 1

XY schema (any database) 4
296 MapBasic 11.5

Chapter E: Manually Creating a MapInfo_MapCatalog
Manually Making a Remote Table Mappable
For each spatial table in the remote database that you want to access in MapBasic, you must add a
row to the MAPINFO_MAPCATALOG table. This is carried out in MapInfo Professional when you
select Table > Maintenance > Make ODBC Table Mappable.

If you do not use MapInfo Professional to manage the Map Catalog, you must manually add rows to
the MAPINFO_MAPCATALOG table for each spatial table in the database that you want to
geocode. Each entry must contain the following information about the table.

Oracle Spatial Geometry 13

SpatialWare for SQL Server 14

Oracle Spatial Annotation Text 16

SQL Server Spatial (for geometry) 17

SQL Server Spatial (for geography) 18

PostGIS for PostgreSQL 19

SQL Server Spatial with M and Z values (for geometry) 20

SQL Server Spatial with M and Z values (for geography) 21

Spatial Index Type Type Number

Column Name Values to Assign Example

SPATIALTYPE 4.0 for X,Y spatial index tables

(Support for additional spatial servers is under
development)

4.0

TABLENAME Name of the table. Drainage

OWNERNAME Owner name. Georgetown

SPATIALCOLUMN Name of the column, if any containing spatial
features. The name is:

• NO_COLUMN (for mappable tables
using X,Y)

NO_COLUMN

DB_X_LL X coordinate of the lower left corner of the
layer’s bounding rectangle, in units indicated
by the COORDINATESYSTEM as defined by
MapInfo Professional.

-360
MapBasic 11.5 297 User Guide

DB_Y_LL Lower left bounding Y value. -90

DB_X_UR Upper right bounding X value. 360

DB_Y_UR Upper right bounding Y value. 90

VIEW_X_LL X coordinate of the lower left corner of the
view’s bounding rectangle, in units indicated
by the COORDINATESYSTEM as defined by
MapInfo Professional.

-360

VIEW_Y_LL Lower left bounding Y value. -90

VIEW_X_UR Upper right bounding X value. 360

VIEW_Y_UR Upper right bounding Y value. 90

COORDINATESYSTEM A string representing a MapInfo-supported
coordinate system that specifies a map
projection, coordinate units, etc. Values are
one of:

• Earth Projection 1,0 (for
NAD27)

• Earth Projection 1,62 (for
NAD27)

• Earth Projection 1,33 (for NAD 83)
or

• Earth Projection 1,74 (for NAD
83)

Earth
Projection 1,0

SYMBOL A MapInfo Symbol clause (for a layer
containing points)

Symbol
(35,0,12)

XCOLUMNNAME Specify the name of the column containing X
coordinates.

NO_COLUMN

YCOLUMNNAME Specify the name of the column containing Y
coordinates.

NO_COLUMN

RENDITIONTYPE Specify 1 if on, 0 if off. 1

RENDITIONCOLUMN Specify the name of the rendition column. MI_SYMBOLOGY

RENDITIONTABLE Specify the name of the rendition table.

This field is not used.

left empty

NUMBER_ROWS Specify the number of rows in the table. 11

Column Name Values to Assign Example
298 MapBasic 11.5

Chapter E: Manually Creating a MapInfo_MapCatalog
MapBasic 11.5 299 User Guide

300 MapBasic 11.5

F

MapBasic Glossary
If you do not find the term you are looking for in this glossary, check the glossary
in the MapInfo Professional User Guide on the MapInfo Professional DVD.

Terms
Terms

Term Definition

Aggregate functions Functions such as Sum() and Count(), which calculate summary
information about groups of rows in a table. See Select in the MapBasic
Reference Guide or online Help.

Alias A name by which a MapInfo Professional user (or a MapBasic program)
refers to an open table. For example, if a table name is
“C:\MapInfo\Parcels.Tab,” the table’s alias would be Parcels. Table
aliases may not contain spaces; any spaces in a table name become
underscore characters in a table alias. Alias is also a MapBasic data
type; an alias variable can store a string expression that represents a
column name (for example, “World.Population”). The maximum length of
an alias is 32 characters.

Animation Layer A special “floating” layer added to a map that allows for redraw of objects
in that layer only. Modifying an object in the animation layer does not
cause other layers to redraw.

Application Data Files A set of configuration, template, and custom symbol files and directories
that affect the basic settings and customizations of maps. These files are
stored locally but can be shared remotely by users to achieve a
consistent look for their maps.

Argument Also known as a parameter. Part of a statement or a function call. If a
statement or function requires one or more arguments, you must specify
an appropriate expression for each required argument. The argument
that you specify is passed to the statement or function. In syntax
diagrams in the MapBasic Reference Guide and online Help, arguments
are formatted in italics.

Array A grouping of variables of the same type used to keep similar elements
together.

Automation, OLE
Automation

OLE Automation is technology through which one Windows application
can control another Windows application. For example, a Visual Basic
application can control MapInfo Professional through MapInfo
Professional’s Automation methods and properties. See Integrated
Mapping.

Bar Chart A graph representing values from the user’s table. Bar charts can be
used in the graph window or can be displayed thematically on the map.

Breakpoint A debugging aid. To make your program halt at a specific line, place a
breakpoint before that line. To place a breakpoint in a MapBasic
program, insert a Stop statement and recompile.
302 MapBasic 11.5

Chapter F: MapBasic Glossary
Terms
Brush Style An object’s fill pattern. The style is comprised of pattern, foreground
color, and background color.

ButtonPad Another word for “toolbar.”

By Reference, By
Value

Two different ways of passing parameters to a function or procedure.
When you pass an argument by reference (the default), you must
specify a variable name when you make the function call; the called
function can modify the variable that you specify. When you pass an
argument by value (using the ByVal keyword), you do not need to
specify a variable name.

Client An application that uses or receives information from another program.
Often referred to in database connections or DDE connections.

Column Part of a table or database. A table contains one or more columns, each
of which represents an information category (for example, name,
address, phone number, etc.). Columns are sometimes referred to as
“fields.” Tables based on raster images do not have columns.

Comment A programmer’s note included in the program. The note has no use in
the syntax necessary for compiling the program. In the MapBasic
language, an apostrophe (single quotation mark – ‘) marks the beginning
of a comment. When an apostrophe appears in a statement, MapBasic
ignores the remainder of the line (unless the apostrophe appears inside
of a literal string expression).

Compiler A program that takes the text of a program, checks for syntax errors, and
converts the code to an executable format.

Control A component of a dialog box, such as a button or a check box.

Coordinate System A set of parameters that specifies how to interpret the locational
coordinates of objects. Coordinate systems may be earth (for example,
coordinates in degrees longitude/latitude) or non-earth (for example,
coordinates in feet) based; earth maps are referenced to locations on
the Earth.

Cosmetic Layer A temporary layer that exists on every map window. This layer always
occupies the topmost position on the layer control. MapInfo
Professional’s Find command places symbols in the Cosmetic layer to
mark where a location was found.

Cursor, Mouse Cursor,
Row Cursor

The mouse cursor is a small image that moves as the user moves the
mouse. The row cursor is a value that represents which row in the table
is the current row; use the Fetch statement to position the row cursor.

DDE See Dynamic Data Exchange (DDE).

Term Definition
MapBasic 11.5 303 User Guide

Terms
Degrees A unit of measure for map coordinate systems. Some paper maps depict
coordinates in terms of degrees, minutes, seconds (for example, 42
degrees, 30 minutes); MapBasic statements, however, work in decimal
degrees (for example, 42.5 degrees). See also: Latitude, Longitude.

Derived Column A column in a query table, produced by applying an expression to values
already existing in the base table. See the Add Column statement.

Disabled A condition where part of the user interface (a menu command, dialog
box control, or toolbar button) is not available to the user. The disabled
item is generally shown as “grayed out” to indicate that it is not available.
See also: Enabled.

Dynamic Data
Exchange (DDE)

Microsoft Windows-specific protocol that allows different applications to
exchange instructions and data. Both applications must be DDE
compliant for a successful exchange.

Dynamic Link Library
(DLL)

Microsoft Windows files containing shared executable routines and other
resources. DLLs are generally called from one program to handle a task
which often returns a value back to the original program.

Enabled The opposite of Disabled; a condition where a menu command, dialog
box control, or toolbar button is available for use.

Expression A grouping of one or more variables, constant values, function calls,
table references, and operators.

File input/output, File
i/o

The process of reading information from a file or writing information to a
file. Note that the MapBasic language has one set of statements for
performing file i/o, and another set of statements for performing table
manipulation.

Focus In a dialog box, the active control (the control which the user is currently
manipulating) is said to have the focus; pressing the Tab key moves the
focus from one control to the next. Focus also refers to the active
application that is running. Switching to a different application (for
example, by pressing Alt-Tab on Windows) causes the other application
to receive the focus.

Folder An area for file storage; also called a directory.

Geographic Join A relational link between two mappable tables based on geographic
criteria (for example, by determining which point objects from one table
are inside of regions in the other table).

Global Positioning
System (GPS)

A hardware/software system that receives satellite signals and uses the
signals to determine the receiver’s location on the globe.

Term Definition
304 MapBasic 11.5

Chapter F: MapBasic Glossary
Terms
Global Variable A variable defined at the beginning of a program that can be used in any
procedure or function. Created using the Global statement.

Handler A procedure in a program. When a specific event occurs (such as the
user choosing a menu command), the handler performs whatever
actions are needed to respond to the event.

Hexadecimal A base-16 number system, often used in computer programming. Each
character in a hexadecimal number can be 0-9 or A-F. In MapBasic, you
must begin each hexadecimal number with the &H prefix (for example,
&H1A is a hexadecimal number that equals decimal 26).

Integrated Mapping Technology that allows MapInfo Professional features, such as Map
windows, to be integrated into other applications (such as Visual Basic
programs). See Integrated Mapping.

IsoChrone An IsoChrone is a polygon or set of points representing an area that can
be traversed from a starting point in a given amount of time along a
given road network.

IsoDistance An IsoDistance is a polygon or set of points representing an area that
can be traversed from a starting point travelling a given distance along a
given road network.

Isogram An Isogram is a map that displays a set of points that satisfy a distance
or time condition. Isograms are either IsoChrones or IsoDistances.

Keyword A word recognized as part of the programming language; for example, a
statement or function name. In the MapBasic documentation, keywords
appear in bold.

Latitude A type of coordinate, measured in degrees, indicating north-south
position relative to the Equator. Locations south of the Equator have
negative latitude.

Linked Table A type of MapInfo table that is downloaded from a remote database. The
data is taken from the remote database and transferred locally. The next
time the table is linked back to the remote database, MapInfo
Professional checks time stamps to see if there are any differences
between the two tables. Where differences occur, the table is updated
with the new information.

Linker A program that combines separate modules from a project file into a
single MBX application file.

Literal Value An expression that defines a specific, explicit value. For example, 23.45
is a literal number, and “Hello, World” is a literal string. Also referred to
as a hard-coded value.

Term Definition
MapBasic 11.5 305 User Guide

Terms
Local Variable A variable that is defined and used within a specific function or
procedure. Local variables take precedence over global variables of the
same name. Created using the Dim statement.

Longitude A type of coordinate, measured in degrees, indicating east-west position
relative to the Prime Meridian. Locations west of the Prime Meridian
have negative longitude.

Loop A control structure in a program that executes a group of statements
repeatedly. Incorrect coding of a loop can create an infinite loop (a
situation where the loop never ends).

MapBasic Window A window in the MapInfo Professional user interface. From MapInfo
Professional’s Options menu, choose Show MapBasic Window. You
can type MapBasic statements into the MapBasic window, without
compiling a program.

MBX A MapBasic executable file, which the user can run by choosing MapInfo
Professional’s Tools > Run MapBasic Program command. Any
MapInfo Professional user can run an MBX file. To create an MBX file,
you must use the MapBasic development environment.

Metadata Information about a table (such as date of creation, copyright notice,
etc.) stored in the .TAB file instead of being stored in rows and columns.
See Working With Tables.

Methods, OLE
Methods

Part of OLE Automation. Calling an application’s methods is like calling a
procedure that affects the application. See Integrated Mapping.

Module A program file (.MB file) that is part of a project.

Module-level Variable A variable that can be accessed from any function or procedure in an
MB program file, although it cannot be accessed from other MB program
files in the same project. Created by placing a Dim statement outside of
any function or procedure.

Native A standard file format. Choosing MapInfo Professional’s File > New
command creates a native MapInfo table, but a table based on a
spreadsheet or text file is not in MapInfo’s native file format.

Object A graphical object is an entity that can appear in a Map or Layout
window (for example, lines, points, circles, etc.). A MapBasic object
variable is a variable that can contain a graphical object. The Object
column name refers to the set of objects stored in a table. An OLE object
is a Windows-specific entity (produced, for example, through drag and
drop).

Term Definition
306 MapBasic 11.5

Chapter F: MapBasic Glossary
Terms
Object Linking and
Embedding (OLE)

Technology that allows objects created in one application to be used in
another application. An object can be any information such as a map,
chart, spreadsheet, sound effect, text, etc. Embedding is the process of
inserting an object from a server into a container application.

Operator A special character or word that acts upon one or more constants,
variables, or other values. For example, the minus operator (–) subtracts
one number from another.

Parameter Another word for “argument.”

Pen Style The line style set for an object. The style is comprised of width, pattern,
and color.

Pie Chart A circle divided into sectors representing values as percentages in
comparison to one another. MapInfo Professional can display pie charts
in the Graph window or in thematic maps.

Platform An operating environment for computer software (for example,
Windows, Linux).

Procedure, Sub
Procedure

A group of statements enclosed within a Sub…End Sub construction.
Sometimes referred to as a routine or a subroutine.

Progress Bar A standard dialog box that displays a horizontal bar, showing the percent
complete.

Project, Project File A project is a collection of modules. A project file (.MBP file) is a text file
that defines the list of modules. Compiling all modules in the project and
then linking the project produces an application (MBX) file.

Property, OLE Property Part of OLE Automation. A property is a named attribute of an OLE
object. To determine the object’s status, read the property. If a property
is not read-only, you can change the object’s status by assigning a new
value to the property. See Integrated Mapping.

Raster A graphic image format that consists of rows of tiny dots (pixels).

Raster Underlay Table A table that consists of a raster image. This table does not contain rows
or columns; therefore, some MapBasic statements that act on tables
cannot be used with raster underlay tables.

Record An entry in a table or database. Each record appears as one row in a
Browser window.

Term Definition
MapBasic 11.5 307 User Guide

Terms
Recursion A condition where a function or procedure calls itself. While recursion
may be desirable in some instances, programmers should be aware that
recursion may occur unintentionally, especially with special event
handlers such as SelChangedHandler.

Remote Data Data stored in a remote database, such as an Oracle or SYBASE
server.

Routine A group of statements that performs a specific task; for example, you
can use the OnError statement to designate a group of statements that
will act as the error-handling routine.

Row Another word for “record.”

Run Time The time at which a program is executing. A runtime error is an error that
occurs when an application (MBX file) is running.

Runtime A special version of MapInfo Professional that contains all of the
geographic and database capabilities of a full version but does not
include the specific menu and toolbar options in a standard package.
Used to create customized versions of MapInfo Professional.

Scope of Variables Refers to whether a variable can be accessed from anywhere within a
program (global variables) or only from within a specific function or
procedure (local variables). If a procedure has a local variable with the
same name as a global variable, the local variable takes precedence;
any references to the variable name within the procedure will use the
local variable.

Seamless Tables A type of table that groups other tables together, making it easier to
open and map several tables at one time. See Working With Tables.

Server An application that performs operations for or sends data to another
application (the client). Often referred to in database connections or
DDE connections.

Shortcut menu A menu that appears if the user clicks the right mouse button.

Source Code The uncompiled text of a program. In MapBasic, the .MB file.

Standard Standard menu commands and standard toolbar buttons appear as part
of the default MapInfo Professional user interface (for example, File >
New is a standard menu command). Standard dialog boxes are dialog
boxes that have a predefined set of controls (for example, the Note
statement produces a standard dialog box with one static text control
and an OK button). If a MapBasic program creates its own user interface
element (dialog box, toolbar button, etc.) that element is referred to as a
custom dialog box, a custom button, etc.

Term Definition
308 MapBasic 11.5

Chapter F: MapBasic Glossary
Terms
Statement An instruction in a MapBasic program. In a compiled MapBasic program,
a statement can be split across two or more lines.

Status Bar The bar along the bottom of the MapInfo Professional program window
which displays help messages, the name of the editable layer, etc.

Status Bar Help A help message that appears on the status bar when the user highlights
a menu command or places the mouse cursor over a toolbar button.

Subroutine A group of statements; in MapBasic syntax, subroutines are known as
procedures or sub procedures.

Toolbar A set of buttons. The user can “dock” a toolbar by dragging it to the top
edge of the MapInfo Professional work area. The MapBasic
documentation often refers to Toolbars as “ButtonPads” because
ButtonPad is the MapBasic-language keyword that you use to modify
toolbars.

ToolTip A brief description of a toolbar button; appears next to the mouse cursor
when the user holds the mouse cursor over a button.

Transparent Fill A fill pattern, such as a striped or cross-hatch pattern, that is not
completely opaque, allowing the user to see whatever is “behind” the
filled area.

Variable A small area of memory allocated to store a value.

Term Definition
MapBasic 11.5 309 User Guide

Terms
310 MapBasic 11.5

Index

– (minus) 286
date subtraction 56
subtraction 55

Symbols
& (ampersand)

finding an intersection 134
hexadecimal numbers 52
shortcut keys in dialog boxes 105
shortcut keys in menus 93
string concatenation 56, 286

* (asterisk)
fixed-length strings 46
multiplication 55, 286

+ (plus) 286
addition 55
date addition 56
string concatenation 56

, (comma) character
thousand separator 52

. (period) character
decimal separator 52

.Net Programmability
building and copying the assembly file 258
calling a method by alias 259
creating a class in 257
declaring and calling a method from MapBasic

258
exception handling 265
getting started in 256
introduction 256
passing arguments to .Net 260
passing custom variable types to .Net 261
performance notes 261
restrictions of passing structures to .Net 264
terminology 256

/ (forward slash)
date string format 53
division 55, 286

< (less than) 57
< > (not equal) 57
<= (less than or equal) 57

= (equal sign) 57
> (greater than) 57
>= (greater than or equal) 57
\ (backslash)

integer division 55, 286
^ (caret) 55

exponentiation 286
’ (apostrophe) 44

A
Accelerator keys

in dialog boxes 105
in integrated mapping 221
in menus 93

Accessing remote databases 152
Add Column statement 192
Add Map Layer statement 108
Adding columns to a table 136
Adding nodes to an object 176
Addresses, finding 134
Advise loops

MapInfo as DDE server 206
Aggregate functions 302

See MapBasic Reference Guide
Alias 302

column references 131
variables 131

Alias, calling a method by 259
Alter Button statement 114
Alter ButtonPad statement 114, 200
Alter Control statement 104
Alter Menu Bar statement 88
Alter Menu Item statement 89
Alter Menu statement 87
Alter Object statement 176, 180
Alter Table statement 136
And operator 58
Animation layers 108
Any() operator 191
Area units 187
Area() function 190
Area() function 169
MapBasic 11.5 311 User Guide

Arguments
passing by reference 66
passing by value 67
passing to .Net 260

Arithmetic operators 55
Array variables

declaring 47
resizing 47

Ask() function 96
Assembly File, building and copying 258
Assigning values to variables 45
auto_lib.mb (sample program) 124
AutoLabel statement 176
Automation 302

object model 230

B
Bar charts

in graph windows 110
in thematic maps 108

Beeping because window is full 31
Between operator 57
BIL (SPOT image) files 145
Binary file i/o 160, 163
Bitmap image files 145
Branching 62
Breakpoints (debugging) 78
Browser windows 110
Brush styles 169
BrushPicker controls 101
Buffers, creating 178, 281
Button controls (in dialog boxes) 102
ButtonPads

adding new buttons 116
creating new pads 115
custom Windows icons 200
defined 303
docking 121
help messages for buttons 120
ICONDEMO.MBX 118
PushButtons 113
ToggleButtons 114
ToolButtons 114

By-reference parameters 66
By-value parameters 67

C
C language sample programs 254
Callbacks 221
Calling a Method from MapBasic 258
Calling external routines 37, 195
Calling procedures 65

CancelButton controls 102
Case sensitivity 44
Character sets 163
Checkable menu items 89
CheckBox controls 102
Circles See Objects 13
Class

creating in .Net 257
Class name

MapInfo.Application 213
MapInfo.Runtime 213

Clicking and dragging 116
Client/server

database access 152
DDE protocol 201

Close Window statement 107, 207
Color values

RGB() function 173
selecting objects by color 173

Columns
alias expressions 131
Obj (object) column 133, 166
RowID column 133
syntax for reading 130

Command line arguments 33, 246
CommandInfo() function

ButtonPads 114
DDE 206
detecting double-click in list 103
detecting if user clicked OK in dialog box 98
determining Find results 134
ID of selected menu item 92

Comments 44
Commit statement 111, 135
Commit Table statement 108
Comparison operators 57
Compiler 303
Compiler directives 72
Compiling a program

from the command line 33
in the active window 22, 31
without opening the file 39

Concatenating strings
& operator 286
+ operator 286

Confirmation prompt 96
Connecting to a remote database 152
Connection handle 152
Connection number 152
Constants

date 53
defined 50
logical 53
312 MapBasic 11.5

numeric 52
string 52

Contains operator 59, 189
Continue statement 78
Continuous Thematic Shading support 108
Control panels, effect on date formatting 54
Controls

EditText 100
GroupBox 100
StaticText 100

Controls in dialog boxes 99
Conventions 16
Coordinate systems

earth coordinates 186
Layout coordinates 141, 186
non-earth coordinates 186

Copying programs from Help 25
Cosmetic layer

defined 303
deleting objects from 140
selecting objects from 140

Create ButtonPad statement 114, 116, 200
Create Frame statement 111, 175
Create Index statement 135
Create Map statement 135, 167
Create Menu Bar statement 91
Create Menu statement 88
Create Table statement 296
Create Text statement 111, 170
CreateCircle() function 176
Creating

a class in .Net 257
creating

a MapInfo_Mapcatalog 296
Creating map objects 175
Crystal Report writer 129
CurDate() function 56
CurDate() function 52
Cursor (drawing-tool icon) 121
Cursor (position in table) 130
Cursor style, changing 121
Custom Variable Types, passing to .Net 261

D
Data structures 48
Database live access 155
Date constants 53
Date operators 56
DBF (dBASE) files 129
DBMS tables

mapinfo_mapcatalog 296
DDE

acting as client 202, 206
acting as server 206

Debugging a program 78
Decimal separators in numeric constants 52
Decision-making

Do Case statement 61
If…Then statement 60

Declare Function statement 72, 194
Declare Sub statement 64, 194
Declaring a Method from MapBasic 258
Define statement 73
Degrees 304
Degrees to DMS 278
Deleting

columns from a table 136
files 161
indexes 137
menu items 87, 94
menus 90, 94
part of an object 181

Delphi sample programs 254
Dialog boxes, custom

control types 99
disabled controls 104
examples 98
lists based on arrays 104
lists based on strings 104
modal vs. modeless 105
positions of controls 98
reacting to user’s actions 103
reading final values 103
setting initial values 102
shortcut keys 105
sizes of controls 98
terminating 106

Dialog boxes, standard
asking OK/Cancel question 96
hiding progress bars 125
opening a file 96
percent complete 97
saving a file 97
simple message 96

Dim statement 45
Directory names 161
Disabled, defined 304
Distance units 187
DLLs

declaring 194
defined 194
Kernel library 197
passing parameters 195
search path 194
storing ButtonPad icons 200
MapBasic 11.5 313 User Guide

string parameters 196
User library 195

DMS to Degrees 278
Do Case statement 61
Do…Loop statement 63
Dockable ButtonPads 121
Drawing modes 116
Drop Map statement 167

E
Edit menu 39
Editing target 181
EditText controls 100
Embedding 212
Enabled 304
End Program statement 64
EndHandler procedure 68
EOF() function (end of file) 162
EOT() function (end of table) 130
Erasing a file 161
Erasing part of an object 181
Err() function 80
Error$() function 80
Errors

compile-time 32
run-time 78, 135
trapping 80

ERRORS.DOC 219
Events, handling

defined 68
selection changed 119
special procedures 68
user-interface events 84

Excel files 129
Execution speed, improving

handler procedures 71
table manipulation 155
user interface 124

External references
routines in other modules 37
Windows DLLs 194

F
Fetch statement 130, 180
File extensions 15
File input/output

binary file i/o 163
character sets 163
copying a file 161
defined 160
deleting a file 161
random file i/o 162

renaming a file 161
sequential file i/o 161

File menu 38
FileExists() function 161
FileOpenDlg() function 96
Files, external

BIL (SPOT image) 145
DBF (dBASE) 129
GIF 145
JPG 145
PCX 145
Targa 145
TIFF 145
WKS (Lotus) 129
XLS (Excel) 129

FileSaveAsDlg() function 97
Fill styles (Brush) 169
Find and replace

in MapBasic editor 39
sample program 282

Finding a street address 134
Fixed-length string variables 47
Focus

defined 304
within a dialog box 104

Font styles 169–170
FontPicker controls 101
For…Next statement 62
ForegroundTaskSwitchHandler procedure 68
Foreign character sets 163
Format$() function 110
FoxBase files 129
Frame objects 175
FrontWindow() function 107
Function…End Function statement 72
Functions

Area() 169
CreateCircle() 176
CurDate() 52
EOF() 162
EOT() 130
Err() 80
Error$() 80
FileExists() 161
FileOpenDlg() 96
FileSaveAsDlg() 97
Format$() 110
FrontWindow() 107
GetMetaData$() 148
GetSeamlessSheet() 151
IntersectNodes() 182
LabelFindByID() 183
LabelFindFirst() 183
314 MapBasic 11.5

LabelFindNext() 183
LabelInfo() 183
MakePen() 173
NumberToDate() 53
ObjectGeography() 168
ObjectInfo() 168, 173
ObjectLen() 169, 190
Perimeter() 169
ReadControlsValue() 103
ReadControlValue() 105
RemoteQueryHandler() 205
RTrim$() 58
scope 72
SearchInfo() 119
SelectionInfo() 138
StyleAttr() 170, 173
TableInfo() 133, 151, 167
TempFileName$() 161
TriggerControl() 103
UBound() 47
user-defined 72
WindowID() 107
WindowInfo() 107, 141

G
Geocoding

automatically 134
interactively 134
MapMarker 134

Geographic objects, See Objects
Geographic operators 59, 188
Get statement (file i/o) 163
GetMetaData$() function 148
GetSeamlessSheet() function 151
GIF files 145
Global Assembly Cache (GAC), loading 266
Global variables 49
GoTo statement 62
GPS 304
GPS applications 108
Graduated symbol maps 108
Graph windows 110
Graticules (grids) 279
Grid Thematic support 108
GroupBox controls 100

H
Halting a program 64
Header files 15
Height of text 170
Help files

creating 207

using 25
Help menu 41
Help messages for buttons 120
Hexadecimal numbers 305

&H syntax 52
Hot keys

in dialog boxes 105
in menus 93

Hot links 206

I
Icons for ButtonPads 116, 199
Identifiers, defining 73
If…Then statement 60
Images (raster) 145
Include statement 73
Indexes, creating 135, 137
Infinite loops, preventing 71
Info window

customizing 112
making read-only 112

Input # statement 162
Input/output, See File input/output
Insert statement 111, 135, 177
Inserting

columns into a table 136
nodes in an object 176
rows into a table 135

Installation instructions 14
Integer division 286
Integer math 55
Integrated Mapping

defined 305
error trapping 219
introduction 210
MFC 247
object model 230
online Help 226
printing 219
reparenting document windows 214
reparenting legend windows 215
resizing windows 216
sample programs 212, 254
starting MapInfo 213
stopping MapInfo 220
system requirements 211
toolbar buttons 217
using callbacks 221

International character sets 163
Intersection

area where objects overlap 178
Intersects operator 59
MapBasic 11.5 315 User Guide

of two streets 134
points where lines intersect 182

IntersectNodes() function 182
Intersects operator 59, 189
Introduction to MapBasic 21

J
Joining tables 191
JPG files 145

K
Kernel (Windows DLL) 197
Keyboard shortcuts 29
Kill statement 161
Kilometers 186

L
LabelFindByID() function 183
LabelFindFirst() function 183
LabelFindNext() function 183
Labelinfo() function 183
Labels

converting to text 184
in programs 62
on maps 176, 182

Latitude 305
Layers

adding/removing layers 108
Cosmetic layer 140
thematic layers 108

Layout windows
object coordinates 186
opening 111
treating as tables 140

Legend windows, managing 280
Length of an object 190
Like operator 56
Line Input # statement 162
Line numbers in a program 40
Line objects, See Objects
Line styles (Pen) 169
Linked tables 154

defined 305
Linker 305
Linking a project

after selecting a current project 36
from the command line 33
without opening the file 39

ListBox controls 101, 104
Literal value 305
Live remote database access 155
Local variables 45

Logical operators 58
Longitude 306
Looping

Do…Loop statement 63
For…Next statement 62
While…Wend statement 64

Lotus files 129

M
Main procedure 65
MakePen() function 173
Map objects, See Objects
Map projections 108
Map windows 107

labeling 182
See Layers

Map!nfo_Mapcatalog
creating 296

MapBasic Window 45
MapInfo documentation set 16
MapInfo menus file 94
MapInfo Professional

technical support 18
MapInfo Runtime

launching through OLE 213
MapInfo-L archive 19
MAPINFOW.MNU file 94
MapMarker product 134
MBX file

defined 306
Memory limitations 31
Menus, customizing

adding menu items 87
altering a menu item 89
altering the menu bar 90
creating new menus 88
MAPINFOW.MNU file 94
removing menu items 87
shortcut keys 93

Merging objects 178
message URL http

//www.pbinsight.com 15
Message window 111
Metadata 147
Methods

Application object 233
calling by alias 259
declaring and calling from MapBasic 258
defined 306
MBApplication object 239
MIMapGen object 242

Metric units 186
316 MapBasic 11.5

MFC
getting started 247
sample programs 254

Microsoft Excel
DDE conversations 202
worksheet files 129

Mod (integer math) 55
Mod operator 286
Modal dialog boxes 105
Module 306
Modules

calling functions/procedures from other 37
declaring variables that cannot be shared with

other 38
sharing variables with other 37

Mouse events
choosing a menu item 86
clicking and dragging 116
double-clicking on a list 103

Mouse shortcuts 30
Moving an object 180
MultiListBox controls 101, 104
Multi-user editing 141

N
Nodes

adding 176, 182, 282
determining coordinates 182
maximum number of 176

NoSelect keyword 71
Not operator 58
Note statement 96
Number of

nodes per object 176
objects per row 168
open windows 107
polygons per region 168
sections per polyline 168
selected rows 138

NumberToDate() function 53
Numeric constants 52
Numeric operators 55

O
Object Model 230
Object variables 166
ObjectGeography() function 168
ObjectInfo() function 168, 173
ObjectLen() function 169, 190
Objects, creating

based on existing objects 178
buffers 178

creation functions 176
creation statements 175
storing in a table 177

Objects, deleting 167
Objects, modifying

adding nodes 176, 182
combining 178
erasing part of an object 181
position 180
storing in a table 177
style 180
type of object 181

Objects, querying
coordinates 168
styles 169
types 168

ODBC connectivity, data types supported 291
OKButton controls 102
OLE Automation 230

defined 302
OLE Embedding 212
OnError statement 80
On-Line Help

creating 207
using 25

Open File statement 160
Open Window statement 106, 207
Opening a table 128
Opening multiple files 37
Operators

comparison 57
date 56
defined 51
geographic 59, 188
logical 58
numeric 55
precedence 59
string 56

Optimizing performance
handler procedures 71
table manipulation 155
user interface 124

Or operator 58
Order of evaluation 59

P
Pack Table statement 133
Page layouts 111
Paper units 187
Parameters

passing by reference 66
passing by value 67
MapBasic 11.5 317 User Guide

Passing Structures
custom variable types to .Net 261

Passing Structures to .Net, restrictions 264
Pattern matching 56
PCX files 145
Pen styles 169
PenPicker controls 101
Percent-complete dialog box 97
Performance tips

handler procedures 71
table manipulation 155
user interface 124

Perimeter() function 169
Pie charts

in graph windows 110
in thematic maps 108

Point objects, See Objects
Point styles (Symbol) 169
Points of intersection 182
Points, storing in a remote database 154
Polygon overlay 192
Polyline objects, See Objects
PopupMenu controls 101, 104
PowerBuilder, sample programs 254
Precedence of operators 59, 288
Print # statement 162
Print statement 111
Procedures

calling 65
defined 64
Main 65
passing parameters 66
recursion 67
that handle events 68

Product training 26
Program organization 74
Progress bar

defined 307
hiding 125

ProgressBar statement 97
Project files

benefits of 34
creating 35
defined 34
examples 35
linking 36

Project menu 40
Projections, changing 108
Properties

Application object 232
defined 307
MBApplication object 238
MBApplications collection 238

MBGlobal object 240
MBGlobals collection 239
MIMapGen object 241

Proportional data aggregation 192
PushButtons 113
Put statement (file i/o) 163

Q
QueryN tables

closing 138
opening 138

Quick Start dialog box 123

R
RadioGroup controls 101
Random file i/o 160, 162
Raster underlay table 307
Raster underlay tables 145
ReadControlValue() function 103, 105
Reading another application’s variables 205
Realtime applications 108
Records, See Rows
Recursion 67

defined 308
ReDim statement 47
Redistricting windows 111
Region objects, See Objects
Relational joins 167, 191
Remarks 44
Remote data, defined 308
Remote database access 152
Remote database live access 155
remote database tables

mapinfo_mapcatalog 296
RemoteMsgHandler procedure, DDE 206
RemoteQueryHandler() function 205
Remove Map Layer statement 108
Rename File statement 161
Report writer 129
Responding to events, See Events, handling
Resume statement 80
Retry/Cancel dialog box 141
RGB color values 173
Right-click menus

destroying 92
modifying 91

RollBack statement 135
Rotating a graphical object 281
Row cursor, positioning 130
RowID 133
Rows in a table

displaying in Info window 112
318 MapBasic 11.5

inserting new rows 135
row numbers (RowID) 133
setting the current row 130
sorting 135
updating existing rows 135

RTrim$() function 58
Run Application statement 123
Run Menu Command statement 93, 111
Running a program

from MapInfo 22, 32
from the development environment 41
from the startup workspace 123

Run-time errors 78
Runtime executable

launching through OLE 213

S
Sample programs, integrated mapping 254
Save File statement 161
Scope of functions 72
Scope of variables 50
Scroll bars, showing or hiding 108
Seagate Crystal Report writer 129
Seamless tables 150
Search and replace

in MapBasic editor 39
sample program 282

Search menu 39
Search path for DLLs 194
SearchInfo() function 119
SelChangedHandler procedure 68, 119
Select Case (Do Case) 61
Select statement 167–168, 175, 188–190
Selection

changing 139
clicking on an object 118
querying 140

SelectionInfo() function 138
Sequential file i/o 160–161
Set CoordSys statement 141, 186
Set Event Processing statement 109
Set File Timeout statement 143
Set Format statement 53
Set Map statement 108–109, 176
Set Redistricter statement 111
Set Shade statement 108
Set Table statement 151
Set Target statement 181
Set Window statement 107, 207
Shade statement 108
Sharing conflicts 141
Shortcut keys

in dialog boxes 105
in menus 93

Shortcut menus
destroying 92
modifying 91

Simulating a menu selection 93
Size limitations 31
Size of text 170
Snap to Node 221
Sorting rows in a table 135
Source code 308
Speed, improving

handler procedures 71
table manipulation 155
user interface 124

SPOT image files 145
Spreadsheet files, opening 129
SQL Select queries 135
Startup workspace 123
Statement handle 152
Statement number 152
Statements 309

Add Column 192
Add Map Layer 108
Alter Button 114
Alter ButtonPad 114, 200
Alter Control 104
Alter Menu Bar 88
Alter Menu Item 89
Alter Object 176, 180
Alter Table 136
AutoLabel 176
Close Window 107, 207
Commit 111, 135
Continue 78
Create ButtonPad 114, 116, 200
Create Frame 111, 175
Create Index 135
Create Map 135, 167
Create Menu 88
Create Menu Bar 91
Create Text 111, 170
Declare Function 72, 194
Declare Sub 64, 194
Define 73
Dim 45
Do Case 61
Do…Loop 63
Drop Map 167
End Program 64
Fetch 130, 180
For…Next 62
Function…End Function 72
MapBasic 11.5 319 User Guide

GoTo 62
If…Then 60
Include 73
Input # 162
Insert 111, 135, 177
Kill 161
Line Input # 162
Note 96
OnError 80
Open File 160
Open Window 106, 207
Pack Table 133
Print 111
Print # 162
ProgressBar 97
ReDim 47
Remove Map Layer 108
Rename File 161
RollBack 135
Run Application 123
Run Menu Command 93, 111
Save File 161
Select 167–168, 175, 188, 190
Set CoordSys 141, 186
Set Event Processing 109
Set File Timeout 143
Set Format 53
Set Map 108–109, 176
Set Redistricter 111
Set Shade 108
Set Table 151
Set Target 181
Set Window 107, 207
Shade 108
Stop 78
Type…End Type 48
Update 135, 176, 180
While…Wend 64
Write # 162

StaticText controls 100
Status bar help messages 120

in Integrated Mapping 222
Stop statement 78
Stopping a program 64
Storing points on an RDBMS table 294
Storing points on remote databases 154
Street addresses, finding 134
String concatenation

& operator 286
+ operator 286

String constants 52
String operators 56
String variables, fixed- vs. variable-length 47

StringCompare() function 58
Structures 48
StyleAttr() function 173
StyleAttr() function 170, 173
Styles (Pen, Brush, Symbol, Font) 169
Styles, comparing 170
Sub procedures, See Procedures
Subselects 190
Subtotals, calculating 135
support

technical support 18
web sites 19

Symbol styles 169
SymbolPicker controls 101

T
TableInfo() function 167
TableInfo() function 133, 151, 167
Tables

adding dynamic columns 136
adding permanent columns 136
adding temporary columns 136
based on spreadsheets and database files 129
closing QueryN tables 138
column expressions 130
component files 145
Cosmetic 140
creating 135
joining 191
layout 140
making mappable 135
metadata 147
number of open tables 137
Obj (object) column 133, 166
opening 128
raster image tables 145
reading values 130
row numbers 133
Selection 138
structure, modifying 136
structure, querying 137
writing values 135

tables, remote database
mapinfo_mapcatalog 296

Targa files 145
Target objects 181
Technical Support

services 17–19
technical support

obtaining 18
offerings 18

TempFileName$() function 161
320 MapBasic 11.5

Text editors 33
Text height 170
Text objects 169, 180

See Objects
Text styles (Font) 169
Thematic maps 108
Thousand separators, in numeric constants 52
TIFF files 145
ToggleButtons defined 114
Toolbars, See ButtonPads
ToolButtons defined 114
ToolHandler procedure 68, 115
ToolTips 120
Totals, calculating 135
Transparent fill 309
Trapping run-time errors 80
TriggerControl() function 103
Type conversion 55
Type…End Type statement 48
Typographical conventions 16

U
UBound() function 47
Ungeocoding 167
Units of measure

area units 187
distance units 187
paper units 187

Update statement 135, 176–177, 180
Updating remote databases 154
User (Windows DLL) 195
User interface

ButtonPads 113
Cursors 121
dialog boxes, custom 98
dialog boxes, standard 96
menus 86
overview 84
windows 106

User-defined functions 72
User-defined types 48

V
Variable-length string variables 47
Variables

declarations 45
defined 45
global 49
list of data types 46
object variables 166
reading another application’s globals 205
restrictions on names 46

scope 50
style variables 172

Vertices, See Nodes
Visual Basic sample programs 212, 254
Visual C++

getting started 247
sample programs 254

W
Warm links 206
While…Wend statement 64
Wildcards (string comparison) 56
WIN.INI file, querying settings 197
WinChangedHandler procedure 68
WinClosedHandler procedure 68
Window identifiers 107
Window menu 41
WindowID() function 107
WindowInfo() function 107, 141
Windows, customizing

Browser 110
Graph 110
Info window 112
Layout 111
Map 107
Message 111
Redistricter 111
size and position 107

WinFocusChangedHandler procedure 68
Within operator 59, 189
WKS files, opening 129
Workspaces

startup 123
using as sample programs 25

Write # statement 162

X
XLS files, opening 129
MapBasic 11.5 321 User Guide

322 MapBasic 11.5

	Getting Started
	What’s New
	Hardware & Software Requirements
	Compatibility with Previous Versions

	Installing the MapBasic Development Environment
	Before You Begin
	Installation
	Starting MapBasic

	MapBasic File Names and File Types
	MapBasic Documentation Set
	Conventions Used in This Manual
	Terms
	Typographical Conventions

	Getting Technical Support
	Contacting Technical Support
	Software Defects
	Other Resources

	A Quick Look at MapBasic
	Getting Started
	How Do I Create and Run a MapBasic Application?

	What Are the Key Features of MapBasic?
	MapBasic Lets You Customize MapInfo Professional
	MapBasic Lets You Automate MapInfo Professional
	MapBasic Provides Powerful Database-Access Tools
	MapBasic Lets You Connect MapInfo Professional to Other Applications

	How Do I Learn MapBasic?
	The MapBasic Window in MapInfo Professional
	Training and On-Site Consulting

	Using the Development Environment
	Introduction to MapBasic Development Environment
	Editing Your Program
	Keyboard Shortcuts
	Limitations of the MapBasic Text Editor

	Compiling Your Program
	A Note on Compilation Errors
	Running a Compiled Application
	Using Another Editor to Write MapBasic Programs

	Linking Multiple Modules Into a Single Project
	What is a MapBasic Project File?
	Creating a Project File
	Compiling and Linking a Project
	Calling Functions or Procedures From Other Modules

	Menu Summary in MapBasic Development Environment
	The Edit Menu
	The Search Menu
	The Project Menu
	The Window Menu
	The Help Menu

	MapBasic Fundamentals
	General Notes on MapBasic Syntax
	Comments
	Case-Sensitivity
	Continuing a Statement Across Multiple Lines
	Codes Defined In mapbasic.def
	Typing Statements Into the MapBasic Window
	Variables
	Fixed-length and variable-length String variables
	Array Variables
	Custom Data Types (Data Structures)
	Global Variables
	Scope of Variables

	Expressions
	What is a Constant?
	What is an Operator?
	What is a Function Call?
	A Closer Look At Constants
	Variable Type Conversion
	A Closer Look At Operators
	MapBasic Operator Precedence

	Looping, Branching, and Other Flow-Control
	If…Then Statement
	Do Case Statement
	GoTo Statement
	For…Next Statement
	Do…Loop
	While…Wend Loop
	Ending Your Program
	Ending Your Program and MapInfo Professional

	Procedures
	Main Procedure
	Calling a Procedure
	Calling a Procedure That Has Parameters
	Passing Parameters By Reference
	Passing Parameters By Value
	Calling Procedures Recursively

	Procedures That Act As System Event Handlers
	What Is a System Event?
	What Is an Event Handler?
	When Is a System Event Handler Called?

	Tips for Handler Procedures
	Keep Handler Procedures Short
	Selecting Without Calling SelChangedHandler
	Preventing Infinite Loops
	Custom Functions
	Scope of Functions

	Compiler Instructions
	The Define Statement
	The Include Statement

	Program Organization

	Debugging and Trapping Runtime Errors
	Runtime Error Behavior
	Debugging a MapBasic Program
	Summary of the Debugging Process
	Limitations of the Stop Statement
	Other Debugging Tools

	Error Trapping
	Example of Error Trapping

	Creating the User Interface
	Introduction to MapBasic User Interface Principles
	Event-Driven Programming
	What Is an Event?
	What Happens When The User Generates A Menu Event?
	How Does a Program Handle ButtonPad Events?
	How Does a Program Handle Dialog Box Events?

	Menus
	Menu Fundamentals
	Adding New Items To A Menu
	Removing Items From A Menu
	Creating A New Menu
	Altering A Menu Item
	Re-Defining The Menu Bar
	Specifying Language-Independent Menu References
	Customizing MapInfo Professional’s Shortcut Menus
	Assigning One Handler Procedure To Multiple Menu Items
	Simulating Menu Selections
	Defining Shortcut Keys And Hot Keys
	Controlling Menus Through the MapInfo Professional Menus File

	Standard Dialog Boxes
	Displaying a Message
	Asking a Yes-or-No Question
	Selecting a File
	Indicating the Percent Complete
	Displaying One Row From a Table

	Custom Dialog Boxes
	Sizes and Positions of Controls
	Control Types
	Specifying a Control’s Initial Value
	Reading a Control’s Final Value
	Responding to User Actions by Calling a Handler Procedure
	Enabled / Disabled Controls
	Letting the User Choose From a List
	Managing MultiListBox Controls
	Specifying Shortcut Keys for Controls
	Closing a Dialog Box

	Windows
	Specifying a Window’s Size and Position
	Map Windows
	Using Animation Layers to Speed Up Map Redraws
	Browser Windows
	Graph Windows
	Layout Windows
	Redistrict Windows
	Message Window

	ButtonPads (Toolbars)
	What Happens When the User Chooses a Button?
	MapBasic Statements Related To ButtonPads
	Creating A Custom PushButton
	Adding A Button To The Main ButtonPad
	Creating A Custom ToolButton
	Choosing Icons for Custom Buttons
	Selecting Objects by Clicking With a ToolButton
	Including Standard Buttons in Custom ButtonPads
	Assigning Help Messages to Buttons
	Docking a ButtonPad to the Top of the Screen
	Other Features of ButtonPads

	Cursors
	Integrating Your Application Into MapInfo Professional
	Loading Applications Through the Startup Workspace
	Manipulating Workspaces through MapBasic

	Performance Tips for the User Interface
	Animation Layers
	Avoiding Unnecessary Window Redraws
	Purging the Message Window
	Suppressing Progress Bar Dialog Boxes

	Working With Tables
	Opening Tables Through MapBasic
	Determining Table Names at Runtime
	Opening Two Tables With The Same Name
	Opening Non-Native Files As Tables

	Reading Row-And-Column Values From a Table
	Alias Data Types as Column References
	Scope
	Using the “RowID” Column Name To Refer To Row Numbers
	Using the “Obj” Column Name To Refer To Graphic Objects
	Finding Map Addresses In Tables
	Geocoding
	Performing SQL Select Queries
	Error Checking for Table and Column References

	Writing Row-And-Column Values to a Table
	Creating New Tables
	Modifying a Table’s Structure
	Creating Indexes and Making Tables Mappable
	Reading A Table’s Structural Information
	Working With The Selection Table
	Changing the Selection
	Updating the Currently-Selected Rows
	Using the Selection for User Input

	Accessing the Cosmetic Layer
	Accessing Layout Windows
	Multi-User Editing
	The Rules of Multi-User Editing
	Preventing Conflicts When Writing Shared Data
	Opening a Table for Writing

	Files that Make Up a Table
	Raster Image Tables
	Working With Metadata
	What is Metadata?
	What Do Metadata Keys Look Like?
	Examples of Working With Metadata

	Working With Seamless Tables
	What is a Seamless Table?
	How Do Seamless Tables Work?
	MapBasic Syntax for Seamless Tables
	Limitations of Seamless Tables

	Accessing DBMS Data
	How Remote Data Commands Communicate with a Database
	Connecting and Disconnecting
	PostGIS Geometry Conversion Behavior

	Accessing/Updating Remote Databases with Linked Tables
	Live Access to Remote Databases

	Performance Tips for Table Manipulation
	Set the Default View for Remote Tables
	Minimize Transaction-File Processing
	Use Indices Where Appropriate
	Using Sub-Selects
	Optimized Select Statements
	Using Update Statements

	File Input/Output
	Overview of File Input/Output
	Sequential File I/O
	Random File I/O
	Binary File I/O

	Platform-Specific & International Character Sets
	File Information Functions

	Graphical Objects
	Using Object Variables
	Using the “Obj” Column
	Creating an Object Column
	Limitations of the Object Column

	Querying An Object’s Attributes
	Object Styles (Pen, Brush, Symbol, Font)
	Understanding Font Styles
	Stacked Styles
	Style Variables
	Selecting Objects of a Particular Style

	Creating New Objects
	Object-Creation Statements
	Object-Creation Functions
	Creating Objects With Variable Numbers of Nodes
	Storing Objects In a Table

	Creating Objects Based On Existing Objects
	Creating a Buffer
	Using Union, Intersection, and Merge
	Creating Isograms
	Creating Offset Copies

	Modifying Objects
	General Procedure for Modifying an Object
	Repositioning An Object
	Moving Objects and Object Nodes
	Modifying An Object’s Pen, Brush, Font, or Symbol Style
	Converting An Object To A Region or Polyline
	Erasing Part Of An Object
	Points Of Intersection

	Working With Map Labels
	Turning Labels On
	Turning Labels Off
	Editing Individual Labels
	Querying Labels
	Other Examples of the Set Map Statement
	Differences Between Labels and Text Objects

	Coordinates and Units of Measure
	Units of Measure

	Advanced Geographic Queries
	Using Geographic Comparison Operators
	Querying Objects in Tables
	Using Geographic SQL Queries With Subselects
	Using Geographic Joins
	Proportional Data Aggregation

	Advanced Features of Microsoft Windows
	Declaring and Calling Dynamic Link Libraries (DLLs)
	Specifying the Library
	Passing Parameters
	Calling Standard Libraries
	Calling a DLL Routine by an Alias
	Array Arguments
	User-Defined Types
	Logical Arguments
	Handles
	Example: Calling a Routine in KERNEL
	Troubleshooting Tips for DLLs

	Creating Custom Button Icons and Draw Cursors
	Reusing Standard Icons
	Custom Icons
	Custom Draw Cursors for Windows

	Inter-Application Communication Using DDE
	Overview of DDE Conversations
	How MapBasic Acts as a DDE Client
	How MapInfo Professional Acts as a DDE Server
	How MapInfo Professional Handles DDE Execute Messages
	Communicating With Visual Basic Using DDE
	Examples of DDE Conversations
	DDE Advise Links

	Incorporating Windows Help Into Your Application

	Integrated Mapping
	What Does Integrated Mapping Look Like?
	Conceptual Overview of Integrated Mapping
	Technical Overview of Integrated Mapping
	System Requirements
	Other Technical Notes

	A Short Sample Program: “Hello, (Map of) World”
	A Closer Look at Integrated Mapping
	Sending Commands to MapInfo Professional
	Querying Data from MapInfo Professional
	Customizing MapInfo Professional’s Shortcut Menus
	Terminating Your Visual Basic Program
	A Note About MapBasic Command Strings
	A Note About Dialog Boxes
	A Note About Accelerator Keys

	Using Callbacks to Retrieve Info from MapInfo Professional
	Technical Requirements for Callbacks
	General Procedure for Using OLE Callbacks
	Processing the Data Sent to a Callback
	C/C++ Syntax for Standard Notification Callbacks

	Alternatives to Using OLE Callbacks
	DDE Callbacks
	MBX Callbacks
	Displaying Standard MapInfo Professional Help
	Disabling Online Help
	Displaying a Custom Help File

	Related MapBasic Statements and Functions
	OLE Automation Object Models
	Using the OLE Object Model from within the MapInfo Professional Process
	Properties of the Application Object
	Properties of the DockWindow Object
	Properties of the MBApplications Collection
	Properties of an Object in MBApplications
	Properties of the MBGlobals Collection
	Properties of an Object in MBGlobals
	Properties of the MIMapGen Object
	Methods of the MIMapGen Object
	Properties of the MISearchInfo Object
	Method of the MIRow Object
	Properties of the MIField Object
	Properties of the MISelection Object

	MapInfo Professional Command-Line Arguments
	Getting Started with Integrated Mapping and Visual C++ with MFC

	Adding Toolbar Buttons and Handlers
	Using Exception Handling to Catch MapInfo Professional Errors
	Add OLE Automation Server Support
	Adding the WindowContentsChanged Callback

	Learning More

	Working with .Net
	Introduction and Requirements for .Net Programmability
	Terminology

	Getting Started
	Creating a Class in .Net
	Building and Copying the Assembly File
	Declaring and Calling the Method from MapBasic
	Calling a Method by an Alias
	Passing Arguments to .Net
	Performance Notes

	Working with Structures in .Net
	Passing Custom Variable Types (Structures) to .Net
	Restrictions of Passing Structures

	Exception Handling
	Working with the GAC
	Loading an Assembly from the Global Assembly Cache (GAC)

	Controlling MapInfo Professional from Within a .Net Method
	Integrated Mapping in .Net
	Accessing MapInfo Professional through COM
	Callback Methods
	Thread Safety Issues

	Sample Programs
	Samples\Delphi Directory
	Samples\DLLEXAMP Directory
	Samples\DotNet Directory
	Samples\MapBasic Directory
	Samples\MFC Directory
	Samples\PwrBldr Directory
	Samples\VB4 Directory
	Samples\VB6 Directory

	Summary of Operators
	Numeric Operators
	Comparison Operators
	Logical Operators
	Geographic Operators
	Precedence

	Automatic Type Conversions

	Supported ODBC Table Types
	Making a Remote Table Mappable
	Prerequisites for Storing/Retrieving Spatial Data

	Manually Creating a MapInfo_MapCatalog
	Manually Making a Remote Table Mappable

	MapBasic Glossary
	Terms
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

